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Post-Finasteride Syndrome as an Epigenetic Post-Androgen Deprivation Syndrome:
A potential pathological link between Drug-Induced Androgen Receptor
Overexpression and Polyglutamine Toxicity

You can download a PDF Export here.

Post-Finasteride Syndrome (PFS) is a rare and devastating disease encompassing persistent physiological,
sexual, and neurological health problems following exposure to a 5alpha reductase inhibitor. The
condition comprises a broad and variable clinical spectrum and is responsible for relationship breakdown,
disability preventing work, isolation and suicide. Herein, the administrators of the patient support website
propeciahelp.com summarise the current published research into PFS, add to the understanding of the
condition, and present a mechanistic hypothesis to support further scientific investigation. We argue that
PFS cannot be understood with exclusive consideration as to Finasteride and is of unappreciated
significance to health and disease. More appropriately considered a Post-Androgen Deprivation
Syndrome, patients are increasingly seeking support following exposure to diverse substances capable of
anti-androgenic endocrine disruption including 5alpha reductase inhibitors, isotretinoin, serotonergic
antidepressants, saw palmetto extract and concentrated phenolic compounds marketed as health
supplements. A symptomatic and potentially mechanistic overlap between PFS and the polyglutamine
disease Spinal and Bulbar Muscular Atrophy is discussed. Transgenic models illustrate that polyQ
toxicity can be recapitulated through overexpression of the wild-type AR. Persistent AR overexpression
has been established in symptomatic tissue of PFS patients and is a mechanistic consequence of androgen
deprivation. We suggest that site-specific epigenetic changes induced by androgen deprivation may result
in a pathological AR deregulation. The role of the androgen receptor as a ubiquitous and critical regulator
in the physiological and neurological domains relevant to PFS symptomatology is reviewed. We urge
clinical education to end psychosomatic misdiagnosis, aid patient management and ensure a genuinely
informed consent before prescription of these substances to young men. We urge molecular-level
investigation of PFS patients to achieve pathomechanistic understanding, discover safe therapeutic
options and ultimately disease-modifying treatment. Discovery of predisposing genetic and epigenetic
factors will aid in assessing the suitability of young patients for therapies with antiandrogenic modality,
while promising significant translational insight to a range of disease states.

_______________________________________________
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Post-Finasteride Syndrome 

Post-Finasteride Syndrome is a life-altering disease occurring rarely following therapeutic use of a
5-alpha reductase inhibitor such as Finasteride. PFS encompasses serious physical, neurological, and
sexual symptoms of variable severity and distribution. Duration of use is not positively correlated with
the severity or persistence of the symptoms of PFS, and although the condition can develop rapidly after
many years of asymptomatic use, severely affected phenotypes can follow as little as one dose ?(Garreton
et al., 2016; Than et al., 2018)?. The condition is currently without known predictive factors, disease-
modifying treatment or effective therapeutic relief, and thus represents a serious and increasingly urgent
unrecognised public health risk as online marketing for finasteride increases.

The diverse symptoms of PFS and their potential severity are not adequately appreciated by clinicians nor
in medical literature ?(Traish, 2018)?. PFS presents heterogeneously, with variably severe symptoms
from a broad constellation, in isolation or combination. Despite the significant interindividual differences
in presentation, there are key commonalities in the disease behaviour. The health of the most severely
affected patients is so profoundly impacted that they cannot continue their lives in a meaningful capacity.
PFS is frequently causative of relationship breakdown, disability preventing work, isolation and suicide.
Although of controversial practical application, Maslow's hierarchy of needs is a pervasive categorisation
of motivating human needs ?(Kenrick et al., 2010)?. PFS, by this measure, can prove ruinous to the
attainment of basic physiological needs in sleep and sex, safety needs in emotional security, financial
security and health, and the interpersonal needs of friendships, intimacy and family.

Symptoms of PFS

Sexual dysfunction, including:
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Erectile Dysfunction
Loss of libido
Ejaculatory and orgasm disorders
Clear, watery ejaculate
Genital anaesthesia
Post-orgasm exacerbation of symptoms

Symptoms of androgen-responsive tissue, including:

Atrophy of penile tissue and penile deformation
Venous leak, penile calcification, penile fibrosis
Penile, testicular, perineal and prostate pain
Testicular atrophy
Muscle atrophy
Muscular dysfunction, fasciculations, tremors
Dry eyes
Osteopenia, osteoporosis
Tooth decay and tooth loss
Skin pigmentation changes including darkened penile skin
Thinned skin
Dry skin
Acceleration or deceleration of male pattern hair loss

Other physiological changes, including:

Lessened beard growth and altered pigmentation
Altered body temperature
Gynecomastia
Changes in fat distribution; Increased gynoid and android fat
Alteration in allergic reactions

Neurological and Cognitive dysfunction, including:

Depression, Anhedonia
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Memory failure (short term and long term)
Cognitive impairment
Anxiety and panic attacks
Insomnia

Autonomic and sensory nervous system and somatic symptoms, including:

Sinus arrhythmia, bradycardia, tachycardia
Sleep apnoea (obstructive, central)
Visual impairment and problems including visual snow
Head pressure, vertigo and dizziness
hearing difficulty and tinnitus
Digestive impairment including dysmotility, pale stools, diarrhoea and constipation
Numbness, tingling or stinging/burning sensations, often in distal extremities

Endocrine and metabolic alterations can include:

Alteration in serum hormonal parameters including T, E, LH
Deregulation between LH and T
Low vitamin D3
Increased triglycerides
Increased creatine kinase
Metabolic dysfunction, Insulin resistance, glucose intolerance
Hyperbilirubinemia
Decreased 3a-diol-G
Lowered CSF neurosteroids

What makes PFS novel?

Persistent and frequently permanent.
Interindividually variable improvement or deterioration over course of disease progression.
Disease ordinarily progresses in absence of the drug: Majority of cases involve rapid progressive
onset or intensification of health problems that patients colloquially refer to as a "crash" after
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cessation of drug.
Heterogenous presentation: Differing symptoms and severities across patients with variable site-
specific involvement.
Severity is not positively correlated to length of exposure; severe multisystemically affected
phenotypes occur after less than 1mg total.
Atypical spatiotemporal involvement: More common in younger men taking lower dose for hair
loss than older men using for BPH. Associated with greater disability in young men (FAERS
data).
Consequential endocrine fragility: Despite a frequent and curious symptomatic relief, severely
affected patients liable to permanent phenotypical worsening following exposure to substances
with antiandrogenic properties.

Characteristics inadequately explored in medical literature add significantly to the understanding of the
condition and its peculiarity. While PFS is frequently mischaracterised as persistent side effects, in a
majority of cases PFS involves the onset or intensification of health problems after cessation of the drug.
This counter-intuitive phenomenon, which is often sudden and debilitating, is colloquially referred to as
the "crash" by patients. Often, this follows a partial or sometimes even complete resolution of any side
effects experienced on the drug. This is a remarkable and intrinsic novel characteristic so frequent that
media coverage of the condition expresses awareness of the phenomenon ?(Morgans, 2018)?. The
majority of PFS patients are younger men who have taken Finasteride 1mg, or a division of the 1mg or
5mg tablets, for treatment of AGA. This is represented in Adverse Drug Reaction (ADR) reports to the
FDA FAERS scheme. FAERS data shows a markedly higher number of adverse event reports from this
group, coherent with a higher incidence of associated disability ?(Baas et al., 2018)?. This is notably
atypical in that ADRs are usually more common and severe in aged populations ?(Lavan & Gallagher,
2015)?. As finasteride is widely prescribed and PFS is proportionally very rare, there is likely to be a
predisposition in consumers who develop PFS. The apparent prevalence in younger individuals, as well as
reports of rapid development of the condition upon later rechallenge in previously asymptomatic or
mildly symptomatic users further suggests the involvement of spatiotemporal factors, perhaps at the level
of gene expression.

PFS is without a consistent biomarker, however patients with prior hormonal bloodwork will often report
significant alterations to their serum hormonal profile following onset of the condition, including raised
or reduced testosterone. Low luteinising hormone values is commonly reported. Additionally, low
vitamin D and signs of metabolic alteration including increased triglycerides and elevated bilirubin can be
frequently apparent. Basic urological evaluation may be subclinical or unrevealing, but this is not always
the case and clinical evaluation of PFS patients describing a severe or total sexual dysfunction and penile
changes who are clinically examined regularly receive relevant diagnoses including penile venous leak,
microcalcifications, fibrosis and markers of neuropathy. These outcomes, are not dose dependent, often
developing and progressing rapidly after cessation in severely affected patients who took only a single
dose. Professor Daniel Stewart, a previously healthy man with no pre-existing mental or sexual
dysfunction, developed PFS severely following little over one week of 1mg Finasteride. After cessation
due to side effects he experienced the crash, developing sexual dysfunction, genital pain and atrophy,

                                   7 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

severe muscle atrophy, weight loss, extreme fatigue, cognitive dysfunction, anxiety and insomnia. Daniel
committed suicide at age 37 after suffering for eight months, writing to his family that "Finasteride has
destroyed my mind and body". He had received a diagnosis of penile venous leakage ?(PFS Foundation,
2017)?.

Appreciation of PFS has often entailed a narrow clinical focus, and the reality is alarming drug-induced
health problems that extend far beyond erectile dysfunction and depression. Given the diverse array of
symptoms and lack of interdependence, it is in our view highly likely many consumers will have
developed health problems they have failed to associate with the causative product due to the potential for
insidious onset and counter-intuitive presentation after withdrawal. As of 2020, many symptoms are
recorded in some capacity in medical literature, however the breadth is only apparent upon
comprehensive review. Clinical characterisation of PFS in literature review is often incomplete and can
be highly selective in line with the specialisation or hypotheses of the authors. The clear establishment of
the multidomain symptom profile is therefore of paramount importance in line with increasing
commentaries on the condition.

propeciahelp.com

Originating in 2003, propeciahelp is the largest and longest running website for patients suffering from
persistent sexual, neurological and physiological side effects arising following use of the drug Finasteride
(branded Propecia). Propeciahelp.com aims to provide a place of discussion for those affected by PFS.
Propeciahelp's discussion forum is a vast record of PFS patient experiences and has been considered a
source of clinical information ?(Diviccaro et al., 2020)?. Although the quality of discussion is variable,
patient posts which provide clear accounts of individual symptoms, the manner of onset and disease
progression are of clinical value. Submissions have been the subject of published attempts at recording
and categorising the multi-system symptom profile ?(Walf et al., 2018)?.

In the absence of adequate clinical education regarding PFS, propeciahelp remains a key support to many
patients. Along with the families of PFS patients who were driven to suicide by their symptoms, the
administrative staff of propeciahelp assisted in the formation of the PFS foundation which has funded
scientific research into the condition through charitable donations. To deliver a structured clinical
characterisation of the condition, propeciahelp launched a comprehensive Post-Drug Syndrome Survey in
March 2019 and recently passed 200 submissions from post-Finasteride patients experiencing persistent
symptoms for a minimum of three months following cessation. We will seek to publish detailed results in
the future. 
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As well as having designed and gathered the largest standardised self-reported dataset concerning PFS,
over a decade operating the largest patient support website provides us with a unique insight into the
clinical situation. The administrators of propeciahelp have herein summarised current research on PFS.
We additionally present a contextual mechanistic hypothesis as basis for future investigation. The vital
role of the AR in physiological domains relevant to the symptomatology of PFS is reviewed. This
document is intended to aid those with scientific interest in understanding the condition and the practical
expertise to uncover the molecular mechanisms underlying this remarkable disease.
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In 2011, Traish et al. determined the possibility of a causal relationship between 5a-reductase inhibitor
use and persistent sexual dysfunction in a subset of consumers. They reported the case of a young man
who suffered significant sexual dysfunction, libido loss and a depressive symptomatology that continued
11 years after only weeks of exposure to finasteride for AGA ?(Traish et al., 2011)?. Irwig and Kolukula
first characterised persistent sexual dysfunction in 71 otherwise healthy men who had used finasteride for
AGA. 94% experienced low libido, 92% had erectile dysfunction, 92% developed decreased arousal, and
69% developed orgasm dysfunction. Compared with before use, mean sexual episodes per month dropped
and sexual dysfunction score per Arizona Sexual Experience Scale increased (P < 0.0001) ?(Irwig &
Kolukula, 2011)?. In a follow up report, 54 of these men were reassessed at a mean of 14 months
following their initial interview dates. The mean age of the patients was 31 years and the mean age at
assumption of finasteride was 26 years, with a mean duration of 23 months of use. Participants had no
baseline sexual dysfunction or psychiatric conditions before use of finasteride. Persistent sexual side
effects continued to be present in 96%. 89% of subjects continued to meet the definition of sexual
dysfunction according to ASEX. Mean (± SD) total scores were 7.2±2.0 before finasteride, 22.2±2.6 after
finasteride at the time of the interview, and 20.8±3.6 at reassessment. Severity of sexual dysfunction did
not correlate to duration of finasteride use or duration of persistent effects. Irwig noted a broad range of
commonly reported persistent effects beyond those formally assessed by the ASEX including decreased
volume of ejaculate, loss of penile size and/or testicular size, testicular pain, prostatitis, penile curvature,
reduced penile sensation, a reduction in spontaneous erections. Additionally, subjects reported difficulty
sleeping, mental impairment, and depressive symptoms ?(Irwig, 2012b)?.

In a group of 61 PFS subjects who completed the BDI-II, rates of depressive symptoms were markedly
higher (75%) than the control group (10%). While 3% of controls reported suicidal thoughts, this was
significantly more frequent in PFS patients. 39% of PFS patients exhibited suicidality with 5% having
chosen the statement "I would like to kill myself". Mean (± SD) scores from the 21-item BDI-II were
23.67 (± 12.56) in PFS patients and 5.93 (± 4.48) in the control group (P < .0001) ?(Irwig, 2012a)?. Irwig
additionally reported a decrease in alcohol consumption in a cohort of 63 PFS patients compared to
before use of finasteride. Mean alcoholic beverages consumed per week declined from 5.2±0.7 before
finasteride to 2.0±0.3 after finasteride (p < 0.0001), consistent with observations regarding finasteride's
attenuation of alcohol consumption in animal experiments ?(Irwig, 2013)?. Reporting androgen levels and
semen parameters in 24 PFS patients, 13% were found to have low total testosterone and 13% had low
serum DHT, however mean levels were close to other studies and could not explain the persistent
symptoms. 16% (3 of 19) had severe oligospermia, whereas this finding would be expected in 3% of
fertile-age men ?(Irwig, 2014)?. Considering the medical records of 6 men who committed suicide
following use and cessation of finasteride, Irwig noted common symptoms of persistent sexual
dysfunction and insomnia across all cases ?(Irwig, 2020)?.
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Drasa et al. enrolled 35 patients with persistent sexual and nonsexual symptoms following use and
cessation of finasteride for male pattern hair loss. Patients had an average age of 30 and mean use of
finasteride was 24 months. Assessment was a mean of 12 months after discontinuation. ASEX completion
with respect to before and after use of finasteride showed a mean increase of 14.75. 59% of patients
experienced severe symptoms per the AMS. 68% of participants reported a worsening after cessation of
the drug, and a trend of symptomatic worsening over the course of their condition was reported by 63%.
Duration of use and symptom severity were not statistically associated ?(Drasa, 2014)?.

Ganzer et al. reported a characterisation of the persistent physical, psychological, and cognitive symptoms
experienced by PFS patients who had used the drug for at least 3 months and experienced health
problems after cessation of finasteride. The authors constructed a web-based questionnaire including ad-
hoc questions based around a symptom profile generated from literature review and 100 private patients'
reports to the author's practice. Demographic characteristics, data regarding use and cessation of the drug,
and the onset of symptoms were also ascertained. Additionally, men were questioned as to the medical
support they had sought and their satisfaction with their clinical assessment and treatments. 100 patients
who had sought medical assistance were invited by email and additional patients were recruited from
propeciahelp.com. No participant had a pre-existing sexual dysfunction or psychiatric condition. 93%
reported having used the 1mg finasteride preparation. 84% of patients reported that they were
asymptomatic during use of the medication and symptom onset began after cessation, rapidly so in 68%
of patients. Respondents reported experiencing physical symptoms of fatigue (69%), muscle atrophy and
weakness (56%), fasciculations (47%), decreased oil and sebum (41%), dry and thinned skin (68%),
metabolic changes and increased fat deposition (54%). 14% of respondents reported a finding of raised
fasting glucose and triglycerides. Sexual dysfunction included diminished libido (93%), loss of
spontaneous and morning erections (89%), complete impotence (40%), reduced semen volume and
ejaculatory force (82%), orgasm dysfunction (40%) and sexual anhedonia (70%). Penile atrophy (79%)
scrotal atrophy (51%) and sensory changes were reported. 20% reported Peyronie's disease. Cognitive
complaints were highly prevalent, including severe memory impairment (56%), mental cloudiness or
brain fog (75%), impaired problem solving (69%) and attentional deficits (74%). Chronic insomnia was
reported by 58% of men. Nearly three quarters of respondents reported increased anxiety, low mood, and
anhedonia. Of concern, 63% of respondents had suicidal ideation and felt they could not keep living on
with their extreme side effects. In terms of medical support, 50% had initially consulted a urologist while
62% saw their primary care provider. Physicians generally attributed physical symptoms to being of a
psychological nature and recommended psychiatric consultation (69%). 93% of men were frustrated by
clinical ignorance, inadequate recognition of the validity of their symptoms, and were dissatisfied with
the medical care that they received. The authors conclude the aggregate multi-domain symptom profile
could constitute a definable syndrome ?(Ganzer et al., 2014)?.

Chiriacò et al. conducted a similar retrospective evaluation. 79 men who had used finasteride for AGA
and experienced persistent symptoms for a minimum of six months were asked to answer 100 ad-hoc
questions, both a pre and post-finasteride ASEX questionnaire, and the Aging Male Symptom Scale

                                 12 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

(AMS) questionnaire. Mean age of participants was 33. Finasteride had been taken for an average of
approximately 2 years. All subjects were still symptomatic at assessment. 89.9% of participants noticed
some symptoms during finasteride use, and the trend of symptoms after discontinuation was worsening in
62% of patients, with a trend of improvement reported in 13.9%. Sexual symptoms included loss of
penile sensitivity (87.3%), decreased ejaculatory force (82.3%), decreased penile temperature (78.5%),
reduced ejaculate volume (73.4%), reduction in penile dimension (65.8%), perineal tightness (45.6%).
Other symptoms included anhedonia (75.9%), concentration problems (72.2%), loss of muscle tone and
mass (51.9%), and increased body weight (48.1%). Post-finasteride ASEX score ranged from 13–30 (21.0
± 2.67), with 78.5% having ASEX ?19 points indicating sexual dysfunction. This included 44.3% of
patients indicating severe difficulty or incapability of getting/keeping an erection. Pre-finasteride ASEX
score was far lower (p < 0.001) ranging 5–15 (7.7 ± 2.52), indicating no overt sexual dysfunction. Of 78
patients with available data, all had some signs of androgen deficiency per the AMS, with 60.3% with an
AMS score of ?50 points indicating severe deficiency. The authors note the reports by their PFS patients
suggest androgen deficiency across different tissues where 5alpha reductase is expressed at an average of
four years after finasteride discontinuation, indicating that permanent changes occurred in the human
body ?(Chiriacò et al., 2016)?.

Walf et al. sought to characterise persistent symptoms following finasteride treatment and its
discontinuation by assessment of subjective patient reports on propeciahelp.com. 244 cases were isolated
from discussions in a discrete time period. Walf et al. placed symptoms into four broad categories:
Antiandrogenic effects, estrogenic effects, central effects and nonspecific adverse effects. Antiandrogenic
adverse effects were described to be genital dysfunction, testicular dysfunction and infertility, accessory
sexual or genitourinary organ dysfunction, psychosexual function, and hormonal function. Estrogenic
AEs included breast cancer, breast neoplasm or breast mass, gynecomastia, breast pain, and increased
serum estrogen. Central effects involved depression, anxiety, confusion and “brain fog”, insomnia and
attentional difficulties. The nonspecific/severe AEs were defined as muscle twitching, lower back pain,
weight gain, fatigue, numbness in the anal region, muscle spasms, excessive sweating, bleeding gums,
tinnitus, hot flashes, irregular stool, scoliosis, and discoloration of the urine. While these presented
heterogeneously, some individuals experienced adverse events across all categories ?(Walf et al., 2018)?.

In a retrospective control matched study, Di Loreto et al. evaluated expression of the androgen receptor
and nerve density in multiple cell lines of prepuce tissue in PFS patients aged 29–43 years who had
experienced persistent sexual symptoms for over 6 months, with the notable finding of persistent
androgen receptor overexpression (Di Loreto et al., 2014). Patients had used finasteride for an average of
32 months and had stopped using an average of 56 months to the point of study, at which point all
patients remained symptomatic. PFS patients self-reported symptoms including loss of penile sensation,
erectile dysfunction, pain in the penis, scrotum or testes, penile tissue changes, reduced penile
dimensions, and reduced volume of ejaculate. PFS cases experienced sexual dysfunction at point of
interview per Arizona Sexual Experience Scale (22.5±2.78). PFS patients were additionally asked to
complete the ASEX survey considering themselves before use of finasteride and these pre-finasteride
scores indicated no pre-existing sexual dysfunction (7.6±1.92). Histological evaluation of nerve density
revealed similarity with controls. Immunohistochemistry revealed a significantly higher percentage of
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nuclear AR-positive epithelial cells in all cases (mean±SD, 80.6±8.63%) than in controls (mean±SD,
65.0±19.1%), P = 0.043. Stromal cells in all cases showed a significantly greater expression of AR in the
nuclei compared to controls (mean±SD, 40.0±15.1% in cases versus 23.4±8.68% in controls), P = 0.023.
Percentage of AR positive vessel smooth muscle cells did not differ significantly between the 2 groups.
Averagely, AR positive cells in the 3 tissues was higher in cases than in controls. Di Loreto et al.
speculate that the ostensibly permanent effects could be due to mechanisms of ageing prematurely
induced by artificially reduced androgen levels with finasteride. They conclude a better understanding of
the molecular events may inform possible therapies for these severe effects in young men of fertile age 
?(Di Loreto et al., 2014)?. Although unreported in the manuscript, La Marra, co-author of the study,
further elaborated on the data in a thesis centring on the investigation. He reported the percentages of AR
positive cells are always higher in the cases than in the controls. He further reported positive correlations
between the increase of AR levels in the epithelial and stromal cells and the decrease in ability/frequency
to perform sexually per the AMS, the increase of AR in the vessels cells and the intensification of ASEX
sexual dysfunction and physical exhaustion, and the increase of AR in the epithelial cells and the
worsening of muscular weakness and feeling "burnt out" per AMS. La Marra noted that exogenous
androgens do little to improve - and sometimes worsen - PFS symptoms, concluding that investigations
should centre on epigenetic alterations relevant to the changed sensitivity of the AR ?(La Marra, 2010)?.
Di Loreto's investigation was the first to report significant objective differences at the molecular level and
it has subsequently been suggested that local AR levels could play a pathological role in PFS ?(Than et
al., 2018; Traish, 2018)?.

Demonstrating multisystem involvement in absence of what the authors regarded to be the "typical"
neurological and sexual complaints, Gupta et al. reported a 33 year old man with PFS who suffered
itching, burning micturition, abdominal discomfort, skin rash, and seborrhoea after a first use of 0.5mg
dutasteride for a month. These symptoms subsided with the adoption of exercise but had reoccurred and
persisted after attempting AGA therapy with finasteride 1mg four years later. Keratotic follicular papules
and pustules were apparent on his shoulders and back. Semen analysis revealed pus cells and moderate
growth of Enterococcus faecalis following culture. Therapeutic attempts over the following years at three
centres were not successful ?(Sharma et al., 2016)?. Motofei also reported an uncommon presentation in a
52 year old who presented with generalised vitiligo 2 months after cessation alongside symptoms
including bilateral gynecomastia, sexual dysfunction and depression that were not present upon pre-
treatment evaluation ?(Motofei et al., 2017)?.

Cecchin et al. reported a significantly higher occurrence of "extreme length" AR polymorphisms (CAG-
rs4045402 and GGN-rs3138869) in PFS patients following finasteride use for AGA as compared to
controls without AGA, suggestive of a potential genetic role in the development of AGA and PFS 
?(Cecchin et al., 2014)?. Cauci et al. expanded on this in a subsequent study exploring the relationship of
AR polyglutamine stretch-encoding (CAG) and polyglycine stretch-encoding (GGN) polymorphisms
with the individual symptoms of PFS in 66 patients experiencing symptoms for a median of three years
after cessation. Patients were asked to describe their trend of symptoms after discontinuation (improved,
unchanged or worsening). 57.6% of PFS patients responded that their trend after was worsening.
Androgen receptor polymorphisms were correlated to the frequency of several PFS symptoms. Patients
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completed a bespoke symptom questionnaire in addition to the ASEX and the AMS. While total scores of
the ASEX and AMS did not differ with length of (CAG)n and (GGN)n repeats, significant differences
were found within individual PFS symptoms. Patients with shorter CAG repeat lengths (9-19) used
finasteride for a shorter time than those with medium (20-24) or long (?25) repeat lengths, and 83.3% of
this short CAGn group reported severe libido loss, scoring 5 on item 17 of the AMS. Increased body
weight (>2kg) following use of finasteride was most associated with those with long CAG repeats.
Interestingly, skin dryness showed a parabolic curvilinear profile, with short and long CAGn groups
having higher frequencies (50% and 63.6% respectively) than the medium CAGn group (18.9%). Muscle
spasms were found to be more frequent amongst long CAGn carriers (72.7%). Patients with long (>23)
GGN repeats did not report experiencing scrotal pain compared with 34.1% of those with medium (23)
GGN repeats and 32.7% of those with medium to short length (?23) repeats. Penile pain was likewise
more often seen in those with short or medium rather than long GGN repeats (34.6% vs 7.1%). Long
GGN repeats were also associated with a better phenotype regarding fatigue, loss of vitality, depression
and the feeling of passing one's peak than those with medium repeats. Loss of perineal fullness was
reported by 100% of men with short GGNn repeat lengths, 70.5% of men with medium GGN repeats and
57.1% of those with long repeats. The results of Cauci et al. suggest genetic involvement in the symptom
profile of PFS, and the authors conclude the need for much more research into the pathophysiology,
particularly with a precision medicine approach ?(Cauci et al., 2017)?.

In a clinical assessment of 24 PFS patients, Basaria et al. found no significant sequence variations in AR,
SRD5A1 or SRD5A2. Depression scores were significantly higher in PFS patients via BDI, Hamilton
Depression inventory and PHQ-9. PHQ-9 scoring was not significantly related to either the duration of
finasteride use or the time since discontinuation of the drug. Some characteristics were measured and
were not significantly different to controls. No hormonal correlate able to account for the pathological
presentation was identified. Two fMRI measurements suggested neurobiological abnormalities PFS
patients. fMRI of PFS patients’ brains in response to erotic stimuli was conducted. Worsening IIEF
scores correlated to increased activity in the neural areas the authors deemed to correspond with sexual
arousal, while activity in brain regions associated with higher level cognitive and motivational networks
decreased concomitantly, revealing a dissociation in activity that may be a marker of neural changes
following use of finasteride. Blood-oxygen dependent activity in brain areas implicated in major
depression were also identified in PFS patients with correlation to BDI scores pertaining to negative
affect ?(Basaria et al., 2016)?. This study included limited gene expression assay of skin taken from the
back of symptomatic patients and non-symptomatic finasteride users. Although the paper stated that "we
did not find evidence of...significant alterations in expression of AR-dependent genes in the skin", this is
not completely reflective of the statement in the study's supplementary appendix: "While the DESeq
analysis determined there were statistically significant differences in a few of the androgen-regulated
genes, the hierarchical clustering analysis revealed that the symptomatic and non-symptomatic subjects
did not share the immediate cluster" (Basaria et al., 2016 appendix: methods).

Melcangi et al. Performed case-controlled clinical evaluations of 16 PFS patients aged 22-44 with a
strong focus on the neurological presentation of the syndrome. Mean treatment duration was 1037 days
with a range of 451–4697 days between cessation of finasteride and clinical evaluation. 50% of PFS
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patients were deemed to suffer from major depressive disorder per screening with the Mini-International
Neuropsychiatric Interview, and scores of Beck Depression Inventory and Beck Anxiety Inventory were
significantly higher in those with MDD. Ten patients experienced severe ED per the IIEF15, while the
remaining 6 exhibited mild to moderate ED. Ultrasound determination of testicular volume was
calculated to be normal in patients. Objective markers of neuropathy were determined in 25% of patients
via sensory evoked potentials of the pudendal nerve, while 75% of the patients had normal PN_SEPs. No
evidence of metabolic, toxic, or inherited disease associated with peripheral nervous system damage was
detected. Interestingly, depression scores were not correlated to PN_SEPs while sexual dysfunction
scores were. The cerebrospinal fluid of 14 patients was analysed with comparison to 25 healthy age-
matched controls. Significant differences were determined. Pregnenolone, isopregnanolone, progesterone
and dihydroprogesterone were significantly decreased, while levels of dehydroepiandrosterone (DHEA),
testosterone and 3?-diol were increased. Additionally, 17?-estradiol and DHT were decreased. Plasma
determination showed differences to the CSF findings. In serum, pregnenolone, tetrahydroprogesterone,
DHEA and T were significantly increased, while dihydroprogesterone was significantly decreased 
?(Melcangi et al., 2017)?. This disruption in neurosteroids is notedly heterogenous and differed slightly to
findings from their previous pilot study involving 3 PFS patients ?(Melcangi et al., 2013)?. Melcangi et
al. later reported that the gene promoter of SRD5A2 was methylated in CSF samples of 9 of 16 PFS
patients (age 34.5 ± 8.8 years) compared with 1 of 13 age-matched controls. Interestingly, the single
control with SRD5A2 methylation had a diagnosis of normotensive hydrocephalus. Amongst PFS
patients the methylation ranged from 15.4 to 100%. Neither depression, anxiety or erectile dysfunction
scoring via validated scales were correlated to methylation status. Methylation was not found in blood
DNA, demonstrating tissue specificity. SRD5A1 was found to be unmethylated across samples and
groups ?(Melcangi et al., 2019)?.

Rubin et al. Performed penile duplex Doppler ultrasound examination with a high frequency probe during
maximal pharmacologic erection on 27 PFS patients. Patients had a mean age of 31, no known
cardiovascular risk factors, and had sexual dysfunction following use of finasteride. 26 of 27 patients
(96%) demonstrated lack of homogeneity and hyperechoic/hypoechoic regions in erectile tissue. They
concluded induced corporal smooth muscle apoptosis and fibrosis may represent a biologic
pathophysiology responsible for impairing tissue expandability resulted in venoocclusive dysfunction and
ED ?(Rubin et al., 2018)?. Mirabal et al. issued 25 patients with persistent symptoms following 5ari use
for AGA and 25 controls a range of validated questionnaires related to self-reported symptomatology
including the IIEF, the International Prostate Symptom Score (IPSS), the Patient Health Questionnaire-9
(PHQ-9) and the Androgen Deficiency in the Aging Male (ADAM). Post-5ari patients had significantly
higher median scores compared with controls in the IIEF (35 vs 29, p=0.035), the IPSS (10 vs 3, p <
0.01), the PHQ-9 (10 vs 1, p < 0.001), and had significant differences in all questions of the ADAM.
Penile duplex doppler ultrasound revealed vascular abnormalities in 17 (68%) post-5ari patients.
Alarmingly, 2 (8%) of post-5ari patients committed suicide during and after the study. Mirabal et al.
concluded that there may be persistent genitourinary, physical, psycho-cognitive, anti-androgenic and
penile vascular changes after 5ARI discontinuation in addition to persistent sexual dysfunction ?(Mirabal,
2019)?.
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Epidemiological research into PFS has thus far been limited to sexual dysfunction and depressive
symptoms. Ali et al. used data mining techniques with FAERS data to conduct a retrospective
pharmacovigilance disproportionality analysis. They analysed reports of sexual dysfunction and suicidal
ideation between 1998 and 2013 in men aged 18-45 who had used low-dose finasteride. Supportive of
survey research previously discussed, the data revealed that a strong signal of persistent sexual
dysfunction and disproportional reporting of suicidal ideation. Most sexual dysfunction reports were
serious, with 43.5% resulting in disability. 87% of incidences of suicidal ideation occurred in men also
experiencing sexual dysfunction from low-dose finasteride. Most of these events were classed as serious
(e.g., contributed to the patient’s death, hospitalization, or disability). Ali note there is mechanistic
plausibility in the link between finasteride and the risks of sexual dysfunction and suicidal ideation, and
that the disproportional reporting could be symptoms of Post-Finasteride Syndrome. The authors
conclude that, although a causal link cannot be inferred from this study due to the nature of the data,
young men receiving low-dose finasteride for AGA are at risk of persistent sexual dysfunction that may
lead to suicidal ideation ?(Ali et al., 2015)?.

Kiguradze et al. have provided a well-designed analysis of a large set of data from the Northwestern
Medicine Enterprise Data Warehouse with sole regards to persistent erectile dysfunction following use of
finasteride or dutasteride. They conclusively identified a strong and intrinsic association between
debilitating persistent sexual dysfunction and exposure to low dose finasteride or dutasteride. Duration of
5-alpha reductase inhibitor exposure was a greater predictive risk factor for ED in young men than all
other assessed factors. Of 4,284 young men, without prior sexual dysfunction, taking finasteride at a dose
less than 1.25 mg/day, 34 (0.79%) developed persistent erectile dysfunction with a median 1,534 days
after drug cessation (interquartile range of 651–2,351 days). Of 103 young men with new ED, 34 (33%)
had new persistent erectile dysfunction ?(Kiguradze et al., 2017)?.

Through obtaining finasteride-related adverse events catalogued by the FAERS reporting system between
April 2011 and October 2014, Fiuk et al. identified 105 women with finasteride-associated adverse events
following use. These included typical PFS symptoms including dry eyes, sleep disturbances and suicidal
ideation as well as hearing loss, renal failure, urosepsis, new incidences of breast cancer, haemorrhagic
diathesis. They concluded female PFS patients represent a small but real subset of long term finasteride-
related adverse events, and that further etiological investigation of this devastating syndrome is crucial 
?(Fiuk et al., 2016)?.

In addition to the significant primary findings in PFS patients discussed, the subject is far more regularly
the focus of literature review. Than et al. concluded that the existing evidence well supports the existence
of persistent sexual, physical, neurological and central effects following 5alpha reductase inhibitor
exposure, and that a growing understanding of the constellation of symptoms describing PFS can inform
prescribing clinicians as to the risk and benefit of prescription ?(Than et al., 2018)?. Traish considered
that the magnitude of the broad and serious symptomatology of the syndrome is inadequately appreciated.
Persistent loss of libido and erectile dysfunction are recognised to be serious issues pertaining to quality
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of life and wellbeing, as well as "signs of something terribly amiss with physiological process". Traish
further deemed it imperative that the scientific and medical communities act now to seek a better
understanding the pathophysiology of this serious and debilitating disorder, expand awareness amongst
physicians and patients, and develop tools for treatment ?(Traish, 2018)?. Said and Mehta concluded that
comprehensive literature review shows a disproportionately high number of men with 5-? reductase
inhibitor-associated sexual dysfunction and infertility, and that though uncommon, broad sexual and
reproductive symptoms that are both serious and persistent can occur. They note that while
methodological concerns have been raised regarding the possibilities of recall and selection bias in the
questionnaire-based study of PFS patients, their results parallel scientific observations about the long-
term pathophysiological changes induced by finasteride, even after treatment discontinuation. They
suggest physicians engage in productive conversation regarding the potential impact of these medications
on their health and quality of life before 5alpha reductase inhibitor prescription ?(Said & Mehta, 2018)?.
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Androgens, the androgen receptor and the expanding understanding of its
role in health

Androgens are well appreciated for their critical developmental role in sexual differentiation ?(Forger,
2018)?, male characteristics, the development and maintenance of male sexual organs and sexual function
?(C J Bagatell et al., 1994; Podlasek et al., 2016; A. M. Traish, 2008; Yamada et al., 2006)?. However,
androgens are now known to play a "pleiotropic role...in virtually all body systems" ?(Gibson et al.,
2018)?. Gibson et al. identify four key areas in which the understanding of the role of androgens has
evolved and expanded in the 21st century: Testosterone's recognition as a "Goldilocks" molecule, with
too much or too little androgen signalling disrupting cellular homeostasis and proving deleterious to
health, a dynamic and tissue specific regulation of intracrine androgen metabolism, an increased
understanding of the role of androgens in female reproductive tissue, and the extensive role for androgen-
mediated regulation in tissue beyond the reproductive system in both sexes ?(Gibson et al., 2018)?. At the
tissue level, there are tightly controlled optimum levels for androgen concentrations. Owing to the crucial
role of androgen intracrine biosynthesis and metabolism in the physiology of peripheral tissues in males
and females, dysregulation can impair both local and systemic metabolic homeostasis ?(Carrie J. Bagatell
& Bremner, 1996; Schiffer et al., 2018)?.

Nuclear receptors are ancient proteins well conserved across evolutionary time and are present across the
Metazoa ?(King-Jones & Thummel, 2005)?. The effects of androgen steroids are primarily mediated
through the Androgen Receptor ?(Verhoeven & Swinnen, 1999)?, a class I steroidal receptor protein
which binds androgens as ligand in the cytoplasm, dissociates from chaperones and translocates to the
nucleus ?(Davey & Grossmann, 2016; Ni et al., 2013; Tsai & O’Malley, 1994)?. The AR is ubiquitously
expressed across most bodily tissues including the brain and nervous system, penis, testes, prostate,
skeletal muscle, skin, liver, urinary bladder, gastrointestinal tract, arteries, kidneys, breast, uterus, bone,
adrenal glands, and teeth ?(Dale et al., 2002; Fujimoto et al., 1994; Gannon et al., 2019; Heemers &
Tindall, 2007; Khalil et al., 2018; Kimura et al., 1993; Mhaouty-Kodja, 2018; Ruizeveld de Winter et al.,
1991; Schultheiss et al., 2003; Sinha-Hikim et al., 2004; Vanderschueren et al., 2014; Verhoeven &
Swinnen, 1999; Wu et al., 2019; Xia et al., 2019)?. Significant evidence has demonstrated the AR is
expressed across many areas of the brain in both sexes including the temporal, medial preoptic,
hypothalamus, amygdala, bed nucleus of the stria terminalis, midbrain, frontal and prefrontal areas,
cingulated gyrus, and limbic regions including the hippocampus, where it is critical to important
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neurocognitive functions including reproductive behaviour, reward behaviour, learning, memory, spatial
awareness and metabolic regulation ?(Beyenburg et al., 2000; Brock et al., 2015; Lu et al., 1998; Morford
et al., 2018; Shah et al., 2004; Simerly et al., 1990; Tobiansky et al., 2018)?. The role of the AR in disease
cannot be overstated ?(Koryakina et al., 2014)? owing to its role as an important hub mediating multiple
cellular signals and functions ?(Lai et al., 2012)?.

The AR is coded from eight exons located in the long arm of the X-chromosome ?(J. Brand & M. Dehm,
2013; Lubahn et al., 1988)?, lacks a TATA and CCAAT box in the regulatory promotor, and is comprised
of four distinct domains acting together to mediate genomic effects of androgens in target tissue. These
are the N-terminal domain, the DNA binding domain, the hinge region, and the C-terminal ligand binding
domain ?(Brinkmann et al., 1989; Lanciotti et al., 2019; Mangelsdorf et al., 1995; I J McEwan, 2004)?.
The AR is regulated by ligand binding, interaction of functional domains (such as N/C terminal
interaction), homodimerization and cofactor interactions ?(van Royen et al., 2012)?. The N-terminal
domain is intrinsically disordered and exists as collections of conformers, allowing rapid impermanent
structural alterations in response to the cellular environment and binding of multiple coregulators with
distinct outcomes ?(Kumar & McEwan, 2012; I. McEwan & Monaghan, 2016)?. This region contains
polymorphic glutamine and glycine tracts ?(Wadosky & Koochekpour, 2016)?. The ligand independent
AF-1 surface in the N-terminal domain interacts with coregulators ?(Heinlein & Chang, 2002)?. More
than 200 AR-interacting proteins with either coactivator or corepressor activities are known ?(Chang &
McDonnell, 2005)?. The open structure of the ligand binding domain (LBD) adopts a compact structure
when bound to agonists, which are then sealed within hydrophobic interior ?(Iain J. McEwan & Kumar,
2015)?. Helix 12 is repositioned to form a surface for transcription promoters ?(Hur et al., 2004)?. The
LBD contains AF-2 which is pivotal to the ligand-dependent full activation of the androgen receptor 
?(Narayanan et al., 2018)? and is affected by coregulators. The AF-2 has high affinity for a highly
conserved 5-residue FQNLF motif in the N-terminal segment of the N-terminal domain. The LBD
binding to this region facilitates activation, and molecular chaperones compete for binding and prevent
activation of the AR in a delicate balance of protein-protein interaction that is seemingly regulatory of
activity, solubility, concentration and AR turnover ?(Eftekharzadeh et al., 2019)?. A nonclassical zinc
finger structure in the DNA Binding Domain functions to recognise and make contact with nucleotide
sequences, while a second mediates dimerization on DNA ?(Iain J. McEwan & Kumar, 2015)?. The
activation of the AR and targeting of androgen response elements results in increased transcription of a
host of genes, many of which control cell growth, proliferation and regulation of apoptosis ?(Heemers &
Tindall, 2007)?. Liganded AR also activates coregulators distinctly from its DNA binding capability 
?(Slagsvold et al., 2001)?. The human AR has AREs and autoregulates its own gene in a tissue-specific
manner ?(Hunter et al., 2018)?. The AR has functional roles beyond transcription, and nonclassical AR
mediated actions occur via the ERK, SRC, PI3K, MEK and AKT pathways ?(Deng et al., 2017;
Vanderschueren et al., 2014)?. Recently, ubiquitously expressed specific G protein-coupled receptors
known as membrane androgen receptors have been described by which androgens mediate rapid
intracellular actions and diverse nonclassical processes, eliciting significant physiological and
behavioural effects in animals and humans within seconds or minutes ?(Balthazart et al., 2018; Foradori
et al., 2008; Geniole et al., 2019; Kalyvianaki et al., 2019; Thomas, 2019; Thomas et al., 2018)?.
Testosterone association to membrane AR exerts a rapid regulatory influence over classical genomic AR
signaling ?(Deng et al., 2017; Li et al., 2018)?, and appreciation of these effects are therefore more
accurately characterised as nonclassical as opposed to nongenomic ?(Balthazart et al., 2018)?. The rapid
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nonclassical actions of the mAR ZIP9 are vulnerable to disruption by endocrine disrupting chemicals
known to interfere with classical androgen signaling, and the toxicological consequences of this are
currently unclear ?(Thomas & Dong, 2019)?.

The primary male steroid hormone and AR ligand testosterone is produced by the Leydig cells of the
testes (Schiffer et al., 2018). Testosterone is synthesised from cholesterol (Miller, 1988) through a
number of steps originating with p450 side-chain cleavage conversion to pregnenolone in the inner
mitochondrial membrane (Selvaraj et al., 2018). Leydig cell production of testosterone is stimulated in
response to the anterior pituitary releasing LH in response to a pulsatile release of LHRH by the
hypothalamus, and testosterone regulates LHRH release via a negative feedback loop (Heemers &
Tindall, 2007). Androgen signalling is amplified in target tissue through the metabolism of T to 5?-
dihydrotestosterone (DHT). DHT is the most potent endogenous androgen (Pretorius et al., 2016; Rege et
al., 2013), with a four-fold higher binding affinity for the androgen receptor (Gao et al., 2005) and a three-
fold lower dissociation rate than that of testosterone (Wilson & French, 1976). Agonists form hydrogen
bonds to the AR with high occupancy, with DHT bonding to residue Thr877 and testosterone bonding at
Asn705 (Azhagiya Singam et al., 2019). DHT binding causes the AR to undergo conformational change
to its DNA binding state (Kovacs et al., 1984), and increases synthesis and degradation of the AR protein
(Syms et al., 1985). However, tissue-level factors regulating metabolism including local intracellular
ligand concentrations influence binding in addition to relative ligand affinities, and as such DHT does not
always bind preferentially compared with T (Swerdloff et al., 2017).

Circulating T is more important than serum DHT for optimizing the intracellular DHT concentrations due
to the presence of a rate-limiting enzyme, 5a-reductase. Testosterone is metabolised to DHT irreversibly
by the catalytic microsomal enzyme 5?-reductase type 2. 5AR2 is a hydrophobic membrane-bound
protein comprised of 254-260 amino acid residues (Russell & Wilson, 1994). The 5?-reductase family of
enzymes are diffusely expressed across a large number of tissues, and exert a profound effect on human
health due to their regulation of steroid metabolism and metabolic functions including glucocorticoid
clearance ?(Abdulmaged M. Traish et al., 2014)?. 5ar enzymes catalyze the reduction of the double bond
in the A-ring at ?4,5 position in C-19 and C-21 steroids ?(Azzouni et al., 2012; Abdulmaged M. Traish et
al., 2015)?.

Development and pharmacology of Finasteride

Loss of appropriate androgen signaling is associated with diverse detrimental effects in males, as
evidenced by the well appreciated side effects of androgen deprivation therapy. ADT is known to induce
bone problems, metabolic dysfunction, sexual dysfunction, reduction of penile and testicular size,
gynecomastia, fatigue, vasomotor flushing, memory, cognitive and psychosocial impairments ?(Nguyen
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et al., 2015)?. Heightened androgen action is directly implicated in pathologies including benign prostate
hyperplasia, prostate cancer ?(Banerjee et al., 2018)?, bladder cancer ?(Gil et al., 2019; Liu et al., 2018)?,
androgenic alopecia ?(Lai et al., 2012)?, lower urinary tract symptoms and polycystic ovary syndrome 
?(Apparao et al., 2002)?. As 5alpha reductase is largely responsible for tissue DHT levels, 5alpha
reductase inhibitor products can alleviate symptoms owing to reducing pathological androgen receptor
activation. Significant increases in serum DHT via exogenous DHT administration have little effect on
prostate DHT concentrations, prostate size, and lower urinary tract symptoms ?(Swerdloff et al., 2017)?.
Considering misconceptions likely arising from the lowered serum levels following 5alpha reductase
inhibitor therapy coinciding with symptomatic relief in these domains, Swerdloff et al. note this illustrates
fundamentally important control mechanisms in androgen target tissues that finely regulate androgen
synthesis and degradation pathways to maintain DHT homeostasis, to which circulating DHT levels are
of much less importance than that of T ?(Swerdloff et al., 2017)?. Beyond these primary androgens,
around 5-10% of serum androgens include dehydroepiandrosterone, androstenediol, and androstenedione,
which can be produced by ACTH-regulated adrenal synthesis ?(Rainey et al., 2002)?.

The prostate is a strictly androgen dependent structure ?(Banerjee et al., 2018)?. The link between
androgens and prostate growth was established in the mid-20th century ?(Nelson, 2016)?. Concurrently,
androgens were understood to be both a strict requirement and driver of male pattern hair loss 
?(Hamilton, 1942)?. The selective 5alpha-reductase type 2 inhibitor Finasteride is a 4-azasteroid that was
developed as a treatment for benign prostate hyperplasia (BPH) and androgenic alopecia (AGA) by
Merck. This programme followed Imperato-McGinley's identification and profiling of
pseudohermaphroditism in males with genetic 5aR deficiency ?(Imperato-McGinley et al., 1974, 1991)?.
These (46XY) males demonstrate at birth a marked ambiguity of external genitalia and are frequently
raised as girls. However, a notable change occurred at puberty during which they developed a typical
male phenotype, including virilisation of ambiguous genitalia into a functional penis and male
psychosexual orientation regardless of prior female designation and rearing ?(Imperato-McGinley et al.,
1974; Imperato-McGinley & Zhu, 2002)?. In adulthood this cohort display little body hair, minimal beard
growth, no hairline recession, no acne and significantly smaller prostates. Finasteride clinical research
and development leads viewed genetic 5ar2 deficiency as a predictive model for the chronic inhibition of
the 5ar2 enzyme in the adult male ?(Stoner, 1990)? and that enzymatic inhibition with finasteride would
mimic a genetic 5ar2 deficiency ?(GORMLEY et al., 1990)?. Without consideration as to the devastating
outcomes for a subset of consumers, finasteride appears to be tolerated in most men.

Finasteride exhibits a highly unusual and nonlinear dose-response. Maximum DHT suppression is
achieved after a single 1mg dose. It is markedly suppressive of DHT at all daily doses between 0.04 and
100mg over two weeks. Steady-state DHT levels were reduced to between 0.1-0.15ng/ml at all doses
tested by Gormley et al, with DHT levels returning to pre-treatment levels within 14 days of cessation 
?(GORMLEY et al., 1990)?. 0.05 to 5mg finasteride produces a 60% reduction in DHT in scalp skin.
Similarly, a dose of approximately 0.2 mg of finasteride is not appreciably different to 5mg in terms of
serum DHT reduction, suggesting this drug is profoundly effective at low doses ?(Frankel, 1999)?.
Preferentially binding to the 5ar2 enzyme though with a notable lesser effect on 5ar1, finasteride is a
pseudo-irreversible mechanism-based inhibitor that is exceptionally potent, specific, and unusually
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efficient. The enzyme-bound inhibitor complex follows parallel reaction coordinates that proceed through
closely related enolate intermediates as testosterone's reduction to DHT, with the two reactions proving
divergent in the final step, as detailed by Bull et al ?(Bull et al., 1996)?.

No meaningful assessment of lasting sexual dysfunction was published during the clinical development of
finasteride or dutasteride ?(Kiguradze et al., 2017)?. Meta-analysis of 34 clinical trials of Finasteride for
use in androgenic alopecia discovered serious flaws, poor quality reporting and systematic bias ?(Belknap
et al., 2015)?. None of the 34 articles considered had adequate safety reporting. Of 25 clinical trial reports
with a control arm, none reported on blinding adequacy. 18 publications (53%) disclosed authors with
conflicts of interest, while 19 articles (56%) received funding from a pharmaceutical manufacturer of
finasteride. 12 articles (35%) did not disclose their funding. Nonsexual adverse drug events were not
reported in 28 articles. One report found a clinically and statistically significant increase in Beck
Depression Inventory Scores after exposure to finasteride but did not adequately assess adverse effects
other than depression. Noting the flaws in reporting raised by Belknap, Lee et al. meta-analysed fifteen
trials and nevertheless concluded a 1.55 fold increased risk of sexual dysfunction including erectile
dysfunction, loss of libido and ejaculatory dysfunction with oral use of finasteride ?(Lee et al., 2018)?.

The typical physiological response to finasteride in animals and humans is not sufficient to account for
PFS, its remarkable dose-independent severity, or the common worsening and progression following
withdrawal. However, it is important that significant basic science evidence illustrates finasteride
interacts with the broad physiological systems affected in PFS ?(Irwig & Kolukula, 2011)?. Use of
finasteride is an identified risk factor for male infertility ?(Samplaski et al., 2019)? and has been
associated with a variably reversible depletion in sperm count in humans at 5mg and 1mg doses ?(Amory
et al., 2007; Samplaski et al., 2013)?. Recent animal research reveals not only lasting decreases in fertility
parameters in finasteride exposed animals ?(Garcia et al., 2012)?, but a negative impact on the fertility of
the next generation ?(Kolasa-Wolosiuk et al., 2015; Kolasa-Wo?osiuk et al., 2018, 2019)?. Reduced
androgen levels in the offspring of finasteride treated adult male rats have been noted as similar to those
reported in studies exploring the effects of prenatal exposure to the antiandrogenic endocrine disruptors
flutamide and vinclozolin ?(Kolasa-Wo?osiuk et al., 2019; Ostby et al., 1999)?. In gerbils, low doses of
Finasteride have been demonstrated to cause structural alterations in the prostates of both sexes, as well
as lasting upregulation of the AR in the prostate epithelium of intrauterine exposed males, suggested to be
a compensatory response to the low available DHT ?(Maldarine et al., 2019)?. 5alpha reductase inhibition
induces erectile dysfunction in rats that is not fully reversed by washout ?(Öztekin et al., 2012; Pinsky et
al., 2011)?. Histopathological evidence of marked atrophic changes in prostatic epithelial tissues, loss of
penile smooth muscle content and prominent collagen deposition in penile cavernosal tissues has been
reported in rats treated with either Finasteride or Dutasteride ?(Sahin Kilic et al., 2018; Shen et al., 2003;
Zhang et al., 2013)?, suggesting direct deleterious effects on the penis and on erectile function.

Rats subchronically treated with finasteride for 20 days showed depressive behaviour and hippocampal
alterations one month after withdrawal ?(Diviccaro et al., 2019)?. Additionally, disruption of
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neurosteroids and steroid receptors, including an upregulation of the AR in the cerebral cortex, persisted a
month after 20 days of low-dose finasteride treatment in rats, suggesting lasting structural and functional
consequences on brain function ?(Giatti et al., 2015)?. Finasteride has broad consequences upon the
formation of centrally active steroids and neurosteroids ?(Soggiu et al., 2016; Abdulmaged M. Traish,
2018)?. Neurosteroids are important to a range of central functions including HPA regulation and their
dysregulation has a determinant role in neuropsychological abnormalities ?(Belelli & Lambert, 2005;
Calogero et al., 1998; Camille Melón & Maguire, 2016; Carver & Reddy, 2013; Maguire, 2019)?.
Allopregnanolone, determined to be low in the central nervous system of PFS patients ?(Melcangi et al.,
2017)?, has a known role in increasing neurogenesis and neuronal cell survival, as well as reducing cell
death in the hippocampus and midbrain ?(Diotel et al., 2018)?. Low or absent allopregnanolone is
associated with psychological pathology including Post-Traumatic Stress Disorder (PTSD) ?(Pineles et
al., 2018)? and major depressive disorder ?(Maguire, 2019)?. Finasteride is employed experimentally to
abolish the formation of neuroactive steroids including allopregnanolone in models relevant to Tourette
syndrome and PTSD ?(Cadeddu et al., 2019; Nagaya et al., 2015)?.
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PFS: Manifestation of a Post-Androgen Deprivation Syndrome
following exposure to substances with antiandrogenic effects

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/pfs-manifestation-of-a-post-androgen-deprivation-syndrome-following-
exposure-to-substances-with-antiandrogenic-effects/

Endocrine disruption

"Endocrine disruption" refers to a specific toxicity whereby natural and/or anthropogenic chemicals cause
adverse health effects by disrupting the endogenous hormone system. An endocrine disruptor is defined
by the World Health Organisation as “an exogenous substance or mixture that alters the function(s) of the
endocrine system and consequently causes adverse effects in an intact organism, or its progeny, or (sub)
populations”. Potential endocrine disruptors can act on hormone receptors directly or interfere with
proteins mediating hormonal delivery to target tissues and cells. They may act at low doses, exhibit non-
monotonic dose-response relationships, cause tissue specific effects and differing endpoints ?(Bergman et
al., 2012)?. There is broad potential for pharmaco/toxicodynamic influences from EDCs including
alteration of receptor expression and interruption of the critical and complex feedback mechanisms
regulating the endocrine system ?(Lagarde et al., 2015)?. It has been estimated that, in the EU, the cost
associated with disease and disability reasonably attributable to EDC exposure is €157 billion, 1.23% of
the European Union’s gross domestic product ?(Trasande et al., 2015)?. Health risks related to exposure
to endocrine disruptors are typically underestimated and poorly characterised ?(Fucic et al., 2018)?.

There is now scientific consensus that, as well as disruptive effects during developmental windows,
interference with the role of hormones during maintenance of physiological function in adult life can
cause adverse effects ?(Solecki et al., 2016)?. An adverse effect in this context constitutes “a change in
morphology, physiology, growth, reproduction, development or lifespan of an organism which results in
impairment of functional capacity or impairment of capacity to compensate for additional stress or
increased susceptibility to the harmful effects of other environmental influences” ?(Bergman et al.,
2012)?. In this context, anthropogenic chemicals can represent pervasive environmental stressors 
?(Latchney et al., 2017)?, and the marked sensitivity to endocrine-affecting substances common in PFS
patients appears to us to be a manifestation of this increased susceptibility. Changes to the epigenome that
can persist indefinitely after exposure to pharmaceutical products is an increasing area of consideration 
?(Csoka & Szyf, 2009)?. Recent publications centring on epigenetics increasingly appreciate Finasteride
in the context of endocrine disruptors, with respect to both PFS ?(Traish, 2018)? and in broader animal
studies. Finasteride induces hypospadias and a permanent reduction in anogenital distance in adult male
rats exposed during late gestation ?(Bowman et al., 2003)?. This effect on LABC weight is consistent
with the effects of other antiandrogens such as flutamide, procymidone, vinclozolin, and linuron 
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?(McIntyre, 2001, 2002; Ostby et al., 1999; Wolf et al., 1999)?.

Despite the "clear endocrine disrupting activity" of 5-alpha reductase inhibitors, there is a paucity of
information regarding the impact of non-clinical 5-alpha reductase inhibition ?(Patisaul & Belcher,
2017)?. Even with sole consideration of the known effects of very low doses of finasteride on
development, the strong persistence of the drug in the environment and high photostability raises serious
concerns about its widespread availability ?(Sammartino et al., 2013)?. The profound and devastating
changes to physiological health manifesting as PFS in an adult subpopulation of fertile age following
exposure to as little as 0.2mg of Finasteride should add significant and urgent public health concerns
regarding its environmental toxicity as an EDC.

"PFS" following therapeutic use and cessation of other substances?

Importantly, patients are increasingly presenting to us suffering what is ostensibly clinically "post-
finasteride syndrome" following use of drugs and substances including Isotretinoin, Serenoa repens (saw
palmetto) extract, SSRI antidepressants, topical ketoconazole, topical minoxidil, and high-dose phenolic
compounds marketed as health supplements including quercetin and milk thistle extract.

It is recognised that the syndrome termed Post-SSRI Sexual Dysfunction (PSSD) and PFS may share an
etiological link. With focus on neurological symptoms, Giatti et al. presented a hypothesis that the
impairment of overlapping signals of neuroactive steroids, dopamine and serotonin as potentially
underlying the condition(s) ?(Giatti et al., 2018)?. In another consideration of the potential for a single
syndrome underlying these presentations, Healy et al. analysed 300 patient responses to structured
questions provided by and submitted to rxisk.org, an independent drug safety website. The cohort was
comprised of patients suffering persistent sexual dysfunction following use of 5-ARIs, Isotretinoin and
Serotonin Reuptake Inhibitors, with treatment duration ranging from a single dose to over 16 years.
Overlap was seen in symptoms including ED, Libido loss, genital anaesthesia, difficulty achieving
orgasm, pleasureless orgasm, premature ejaculation, emotional blunting, loss of nocturnal erections,
penile or testicular pain, reduction of penis size, decreased testosterone, watery ejaculate, testicular
atrophy, and other skin numbness. Across drug groups, the sexual dysfunction became markedly worse or
even began after cessation of treatment in many instances. For all three drug groups there were reports of
profound dysfunction appearing within days of stopping. while Finasteride and Isotretinoin are stopped
abruptly, SSRIs are often tapered. Interestingly, three subjects on SSRIs reported an increasing loss of
sexual function as the dose was tapered, suggesting that PSSD may be equally likely following abrupt or
gradual discontinuation of an SSRI or SNRI. They conclude the need for comparative investigation in
these cohorts and a systematic approach with structured symptom sets to establish the existence of a
single syndrome ?(David Healy et al., 2018)?.
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The antiandrogenic commonality of substances causing an ostensibly
similar persistent syndrome

Accutane, Roaccutan, Generics (Isotretinoin)

Retinoids possess important antiandrogenic endocrine disrupting properties. Isotretinoin is a 3-cis-retinoic
acid which is marketed under the brand name Accutane, Roaccutan, and as branded generic preparations.
The main application is treatment of acne, which is strongly linked to androgenic activity in the skin 
?(Melnik, 2017)?. Boudou et al. reported that after three months of isotretinoin treatment to six male
patients with severe acne, complete resolution of acne was achieved in four patients and the remaining
two patients improved significantly. No changes were recorded in serum testosterone but a significant
decrease in DHT was observed. Androgen receptor status was investigated in back skin biopsies obtained
in acne areas before and after three months of isotretinoin treatment. Treatment induced a 2.6-fold
decrease in AR binding capacity constant (62 vs. 24 fmol/mg cytosolic protein), demonstrating a marked
sensitivity of androgen receptor in the skin to oral isotretinoin. The authors concluded the data supported
previous observations of DHT suppression and were consistent with the key role of the AR and DHT in
acne, noting sebum is under androgen control and that androgen responsiveness of the pilosebaceous unit
is implicated in acne pathogenesis ?(Boudou et al., 1995)?. Boudou et al. had previously illustrated that
skin biopsies of eight men with severe acne treated with 3 months of isotretinoin "lost 80% of their ability
to form 5 alpha-dihydrotestosterone (P <0.001)" ?(Boudou et al., 1994)?.

AR signal transduction is crucial to acne pathogenesis, stimulating the size of sebocytes and sebum
production as well as proliferation of keratinocytes ?(Lai et al., 2012)?. IGF-1/PI3K/AKT-mediated
inactivation of Forkhead box O1 (FoxO1) is vital to androgen receptor transactivation ?(Fan et al.,
2007)?. FoxO1 is repressive of AR owing to FoxO1's inhibition of AR N/C terminal interaction (Q. Ma et
al., 2009). IGF-1 has correlated to acne severity ?(Cappel, 2005)? and isotretinoin decreases IGF-1 ?(A.S.
Karadag et al., 2009)?. As IGF-1 is inhibitory of AR ?(Palazzolo et al., 2009; Yanase & Fan, 2009)?,
Karadag et al. hypothesised that a consequential nuclear increase in FoxO1 would significantly contribute
to the downregulation of AR and thus a decrease of androgen-responsive gene transcription ?(Ayse Serap
Karadag et al., 2015)?. As with other anti-acne therapies, Isotretinion enhances p53 expression ?(Melnik,
2017)?, which supresses AR expression ?(Alimirah et al., 2007; Shenk et al., 2001)?. Additionally, p53
activates and increases FoxO1 expression ?(Pappas et al., 2017)?. Human primary keratinocytes treated
with isotretinoin show an increase in FoxO1 ?(Shi et al., 2018)?, and significant increases in nuclear
levels of FoxO1 protein are reported in skin biopsies from acne patients following isotretinoin treatment 
?(Agamia et al., 2018)?. In vitro evidence demonstrates all-trans retinoic acid profoundly downregulates
the AR and abolishes the induction of androgen-induced functions ?(Ubels et al., 2002, 2003)?,
suggesting a common androgen antagonism among retinoids. Taken together, there is significant evidence
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for the conclusion that oral Isotretinoin exerts a potent antiandrogenic effect.

Antidepressants

SSRI/SNRI class antidepressants exert significant antiandrogenic activity and have been associated with
reproductive toxicity in male rats and humans ?(Atli et al., 2017; Ilgin et al., 2017; Tanrikut et al., 2010)?.
Fluoxetine is known to be endocrine disruptive, with evidence of nonmonotonic effects ?(Cunha et al.,
2018; Vandenberg et al., 2012)?. Rats administered Fluoxetine display delayed sexual development and
decreased sexual behaviours ?( Drugs@FDA, 2016)?. Griffin and Mellon found the enzymatic efficiency
of 3?-HSD conversion of DHT to androstanediol increased 163-fold when the enzyme was incubated
with fluoxetine and 63-fold with paroxetine ?(Griffin & Mellon, 1999)?, which greatly reduces
intracellular DHT.

Using the H295R cell line, Hansen et al. demonstrated that commonly used SSRIs fluoxetine, paroxetine,
citalopram, escitalopram, sertraline and fluvoxamine exert significant endocrine disrupting properties in
vitro. Despite different steroidogenic enzymes being affected across the six different drugs, the outcome
was the same in terms of a marked decrease in testosterone. Observing that the steroidogenic interruptions
may partly explain some of the sexual disorders associated with SSRIs, Hansen et al. suggest that the
endocrine disrupting potential of these drugs at pharmacologically relevant doses should encourage their
careful use in therapy ?(Hansen et al., 2017)?. A similar decrease in testosterone in this cell line following
exposure to five SSRI drugs had previously been reported ?(Jacobsen et al., 2015)?. Munkboel et al.
demonstrated that steroidogenesis was significantly disrupted in rats exposed to therapeutic doses of
sertraline. The most significant effects observed on testicular sex steroid production, particularly the
Delta 4 steroidogenic pathway (comprising progesterone, 17-hydroxyprogesterone, Androstenedione,
Testosterone, DHT). Testosterone production was significantly decreased in all 3 exposure groups, and
DHT was significantly decreased in the testis, plasma and brain. A 53% decrease of testosterone was
reported in testis of rats exposed to 5 mg/kg/day alongside a general decrease on the D4 axis. Munkboel
et al. note that this corresponds to the human starting dose of 50mg per day and this pronounced effect
suggests the possibility of significant consequences on reproductive and health endpoints. They conclude
that men treated with sertraline should be monitored carefully for sexual dysfunction ?(Munkboel et al.,
2018)?.

Serotonin is recognised to be inhibitory of both male and female sexual behaviour and function ?(Croft,
2017; Iovino et al., 2019; Olivier et al., 2010)?. SSRIs increase inhibition of serotonin reuptake 
?(Ferguson, 2001)?, and increase serotonin by a downregulation of autoreceptors which otherwise act to
inhibit serotonin release ?(Hagan et al., 2012; Neumaier, 1996)?. Both 5HT1a receptor knockdown and
interference using siRNA molecules of has demonstrated antidepressant effects accompanied with greater
increases in extracellular serotonin in response to either stress or fluoxetine ?(Ferrés-Coy et al., 2012)?.
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Increased extracellular serotonin levels in the ventral hippocampus of 5HT1b knockout mice were
observed in response to SSRI administration ?(Nautiyal et al., 2016)?. As well as reuptake inhibition,
SSRIs have been observed to upregulate tryptophan hydroxylase ?(Kim et al., 2002)?, mediatory of
serotonin production in non-neuronal and neuronal tissue ?(Walther, 2003; X. Zhang, 2004)?.

There is a well-studied and remarkable antagonism between testosterone and serotonin in terms of their
behavioural effects that aligns with the significant impact of androgens on serotonergic activity in the
brain ?(Ambar & Chiavegatto, 2009; Daly et al., 2001; Keleta et al., 2007; Martinez-Conde et al., 1985;
Sundblad & Eriksson, 1997; L. Zhang et al., 1999)?. Testosterone promotes territorial behaviour,
impulsivity, sexual behaviour and aggression ?(Bing et al., 1998; Kimura & Hagiwara, 1985; Svensson,
2003; Wu & Shah, 2011)?, whereas serotonin appears to exert opposite effects ?(Batty & Meyerson,
1980; Nelson & Chiavegatto, 2001; Olivier et al., 2010)?. Studer et al. demonstrated that while the pro-
aggressive effect of testosterone is apparently independent of serotonin, the inhibitory effect of serotonin
to dampen maladaptive aggression is "irrelevant" in the absence of testosterone. Additionally, inhibition
of serotonin production failed to reinstate aggression in mice rendered hypoaggressive by early life brain
AR knockout ?(Studer et al., 2015)?.

Recent evidence in tissue outside the brain shows that serotonin exerts a powerful downregulatory effect
on the androgen receptor. BPH tissue has been observed to demonstrate AR upregulation ?(Izumi et al.,
2013; Nicholson et al., 2013; P. Zhang et al., 2015)? as well as a significant depletion of 5-HT ?(Cockett
et al., 1993)?. Carvalho-Dias et al explored the relationship between 5-HT and androgen signaling,
demonstrating a clear inhibitory influence of serotonin on the androgen pathway, providing robust data
from a number of elegant in vitro and in vivo observations. In vitro, 5-HT significantly inhibited rat
prostate cell growth through a 5-HT1a and 5-HT1b mediated down-regulation of AR either with or
without testosterone supplementation. In cultured human cell lines, proliferation of BPH epithelium and
normal prostate stroma cells supplemented with testosterone was significantly reduced by 5-HT or
specific 5-HT1a and 5HT1b agonists. Proliferation of normal prostate epithelium cells was not affected.
Testosterone was observed to upregulate the AR in BPH epithelium and markedly in normal stroma,
while 5-HT or specific 5-HT1a and 5HT1b agonists inhibited this upregulation. Importantly, the absence
of an inhibitory action of 5HT or an agonist of either autoreceptor on viability and proliferation of normal
epithelium cells, with or without testosterone supplementation, was coincidental with a complete absence
of AR expression in these cells. They additionally demonstrated that tryptophan hydroxylase type 1
knockout mice exhibit a remarkable 37% higher prostate-to-body weight ratio compared to wild-type at
20 weeks without difference in overall body weight, with prostate histology revealing areas of
hyperplasia in epithelium and stroma. These mice displayed significantly larger seminal vesicles than
controls, supportive of negative androgenic regulation by 5HT beyond the prostate cell lines. qRT-PCR
revealed increased AR levels in the dorsolateral prostate of Tph1?/? mice. Remarkably, 5HT treatment
significantly reduced prostate weight and seminal vesicles near to that of controls, and reduced AR
mRNA to levels comparable to controls ?(Carvalho-Dias et al., 2017)?.
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Collectively, these in vitro and in vivo studies demonstrate that the inhibition of 5alpha reductase type 2
with finasteride and steroidogenic dysregulation with SSRIs have a clear mechanistic commonality: A
considerable disruption to androgen signaling. As with isotretinoin, SSRIs exert antiandrogenic endocrine
disruptive activity through distinct actions. Further supporting this hypothesis, a significantly affected
patient registered on propeciahelp.com suffers the syndrome following over the counter use of
5-hydroxytryptophan, a serotonin precursor observed to increase excretion of 5-HIAA with significant
interindividual variation ?(Joy et al., 2008)?. This is suggestive of increased production of serotonin
following 5-HTP intake, which is the rationale underlying its supplemental use ?(Hallin et al., 2012)?.

Saw Palmetto (Serenoa repens)

Amongst propeciahelp membership, Serenoa repens (saw palmetto), an extract with markedly
antiandrogenic properties commonly used in treatment of BPH and LUTS ?(Cicero et al., 2019)?, is the
most prevalent alternative therapy causative of the syndrome. This is usually taken as a “natural” hair loss
remedy. Although proportionally rarer, topical antiandrogenic products are causing patients to present
with the syndrome, and these include finasteride, ketoconazole, the antiandrogen RU-58841 and
minoxidil. In animals, Finasteride has been demonstrated to have significant systemic effects following
topical application ?(Chen et al., 1995)?. Ketoconazole is antiandrogenic and suppressive of steroid
production, exhibiting nonmonotonic activity. As with other imidazole azole class drugs, the extremely
potent endocrine disruptive properties of ketoconazole are attracting increasing scrutiny given their
prevalence as antifungal treatments ?(Munkboel et al., 2019)?. In vitro investigations have demonstrated
minoxidil can directly bind to the AR, decrease transcriptional activity and interfere with AR function 
?(Hsu et al., 2014)?. Additionally, minoxidil has been shown to significantly downregulate 5 alpha
reductase type 2 expression in human keratinocytes ?(Pekmezci & Türko?lu, 2017)?. A 28 year old
patient member of our site recently received a diagnosis of "5 alpha reductase inhibitor syndrome" after
one week of oral quercetin-3-O-rutinoside under physician direction led to the rapid development of
persistent symptoms including severe muscle loss, increased adiposity, osteoporosis of the hip and lumbar
spine, severe penile atrophy, post orgasmic illness, impotence, anxiety, depression and insomnia.
Polyphenols can be potent 5alpha reductase inhibitors ?(Hiipakka et al., 2002)? and antiandrogenic at the
receptor level ?(Boam, 2015; Cicero et al., 2019; Kampa et al., 2017; Xing, 2001)?. Nordeen et al. noted
the lack of data regarding purified concentrated flavonoid supplements, while providing evidence that two
flavonoids, luteolin and quercetin, are "promiscuous endocrine disruptors" that demonstrate anti-
androgenic effects, suggesting caution regarding the potential "peril" of supplementing these phenols far
beyond the intake of a normal, healthy diet ?(Nordeen et al., 2013)?.
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Fig. Finasteride, Accutane and SSRIs are all potent antiandrogenic endocrine disruptors. 

While this large range of pharmaceutical and natural substances may seem broad and mechanistically
distinct, the notable commonality is dramatic antiandrogenic endocrine disruption. Any treatments
targeting the AR or suppressing androgens are known to have adverse effects on other critical
physiological functions ?(Bourke et al., 2011)?. Narrow mechanistic perspectives often inform substance
grouping for analysis of the risk of permanent male reproductive malformations and irreversible sexual
disorders in the developing foetus. Through analysis of adverse outcome pathway networks, Kortenkamp
illustrated that independent mechanistic effects from a very broad range of substances meet at nodal
points in the network to result in common down-stream antiandrogenic effects and adverse outcomes.
Kortenkamp suggested that - in addition to phthalates - substances capable of AR antagonism, cholesterol
transporter down-regulation, and interruption or inhibition of steroidogenic or cholesterol synthesising
enzymes should be included in an expanded consideration of substances capable of inducing male
reproductive malformation. A non-exhaustive list of chemicals identified as a starting basis included
vinclozolin, bisphenol A, finasteride, paracetamol, ibuprofen, ketoconazole and simvastatin (Kortenkamp,
2020).
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The AR CAG repeat polymorphism influences tissue response to
androgens

An increase in repeats of the cytosine-adenine-guanine (CAG) trinucleotide sequence in the N-terminal
domain of the androgen receptor is inhibitory of appropriate transactivation function ?(Chamberlain et al.,
1994)?, entailing weaker transcriptional activity ?(Singh et al., 2007)?. Patrizio et al reported a
statistically significant association between longer CAG repeats and infertility (mean length 25) when
compared with healthy controls (mean length 22), particularly apparent in those with extremely severe
oligozoospermia ?(Patrizio et al., 2001)?. AR CAG repeat sequence length is associated with a higher risk
of symptomatic late-onset hypogonadism in men ?(Hong et al., 2018; Kim et al., 2018)?. As well as
physiological outcomes, the CAGn has been associated with evolutionary-relevant male life history
strategies ?(Gettler et al., 2017)?.

Huhtaniemi et al. analysed valuable and unique data from the European Male Ageing Study, comprising
AR CAG repeat lengths and endocrine and clinical characteristics of nearly 3000 men aged 40 –79.
Coordinated by centres across Europe ?(Lee et al., 2009)?, this dataset benefits distinctly from
standardisation and large sample size. Analysis revealed that, while below the 40 CAGn threshold
considered denotive of SBMA ?(Spada et al., 1991)?, as the Exon 1 CAG repeat length extended, the
length of the AR polyglutamine tract repeat correlated directly to all measures of serum testosterone
(total, bioavailable, free) and strongly positively correlated to T and E2 in circulation. No symptoms or
signs of androgen deficiency correlated to the CAG repeat length, suggesting that in the presence of
greater polyQ expansion, deficiency of androgen action may be compensated for by a concomitant
increase in the production of androgens under normal hypothalamic-pituitary-testicular axis conditions 
?(Huhtaniemi et al., 2009)?. This compensation had similarly been hypothesised by Skjærpe et al. who
also reported a positive association between CAG repeat length and free and total testosterone ?(Skjaerpe
et al., 2008)?.

Although not universal, assumedly due to reasons including fluctuations in testosterone levels and the
cross-sectional nature of some studies ?(Harkonen et al., 2003)?, this positive correlation of longer CAG
stretches with free and total testosterone is well established ?(Crabbe et al., 2007; Gong et al., 2014;
Harkonen et al., 2003; Krithivas et al., 1999; Owens et al., 2018; Stanworth et al., 2008)?. Khan et al.
additionally observed this in a large cohort of 400 men ?(Khan et al., 2018)?. Their study noted that the
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IIEF-15 scores negatively correlated to long CAGn repeats despite higher testosterone levels, concluding
that long CAGn repeats impair the effects of testosterone, particularly on erectile function. Liu et al had
previously reported, in a cohort of 478 Taiwanese males aged 41 to 83, that long CAGn repeats were an
independent risk factor for erectile dysfunction in men with testosterone above 3.3ng/mL but,
interestingly, not 3.3ng/mL or below ?(Liu et al., 2015)?. This finding was additionally corroborated by
Tirabassi et al ?(Tirabassi et al., 2016)?. Speculatively, this evidence suggests higher testosterone may
exert a negative physiological effect on tissues expressing expanded CAGn AR before reaching the repeat
threshold of SBMA, in which toxicity is ligand dependent. The relationship between AR CAGn and
optimal function is not strictly linear: Low repeat lengths are also associated with suboptimal function. In
vitro investigations by Nenonen et al. revealed a 22 CAG genotype had the highest AR-mediated
transcription with the least protein compared with 16 CAG and 28 CAG. ?(H. Nenonen et al., 2009)? In
agreement, analysis of 4000 men revealed lengths close to this median confine a lower risk of infertility 
?(H. A. Nenonen et al., 2010)?.

Despite the vital role of testosterone centrally ?(Santi et al., 2018)? and peripherally for male sexual
function and maintenance ?(Corona et al., 2016; Traish, 2008)?, studies of healthy men have failed to
denote a relevant testosterone threshold for erectile dysfunction ?(Lackner et al., 2011)?. Androgen-
induced target activities are attenuated corresponding to the length of triplet residues ?(Zitzmann, 2008)?
and the result of exogenous testosterone treatment is markedly modulated by CAG repeat polymorphism 
?(Francomano et al., 2013)?. Owing to this relationship, it has been suggested that existing thresholds of
hypogonadism and consequential indications are likely to be replaced with a continuum spanned by
genetics and symptom specificity ?(Zitzmann, 2009)?. Recently, Escobedo et al. demonstrated the tandem
CAG repeat sequence folds into a helical structure, with propensity of helicity correlating positively to
sequence length. An accumulation of unconventional hydrogen bond donations from glutamine side
chains to the main chain carbonyl of the residue at relative position i?4 confers a gain of stability to the
polyQ helix and could provide a rationale for length-dependent impairment of transactivation function 
?(Escobedo et al., 2019)?. Collectively, research illustrates that the available level of ligand is not an
absolute determinant of optimum androgenic function, and much is dependent on its transcription factor
in target tissues. The effect of agonists as beneficial or detrimental is determined specifically by the tissue
of action ?(Narayanan et al., 2018)?.

SBMA

X-linked Spinal and Bulbar Muscular Atrophy, also known as Kennedy's disease, is a condition which
effects multiple bodily systems and organs ?(Manzano et al., 2018; Sperfeld et al., 2002)?. SBMA is
caused by an expansion of the CAG trinucleotide repeat polyglutamine tract in the first exon of the
androgen receptor ?(Spada et al., 1991)?, with an excess of 38 repeats denotive of the pathogenesis ?(G.
Querin et al., 2017)?.
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SBMA is rare, occurring in 1 per 400,000 men per year ?(Fischbeck, 1997)?. This rarity has led to calls
for the establishment of international multi-center networks to speed understanding and progress ?(Fratta
et al., 2014; G. Querin et al., 2017)?. Poor clinical awareness, frequent improper diagnosis and confusion
with other diseases likely result in an underestimated prevalence ?(G. Querin et al., 2017)?. In cohorts of
47 and 46 patients considered, 32% and 30% respectively had received an alternative diagnosis at first 
?(Fratta et al., 2014; Rhodes et al., 2009)?. SBMA usually becomes notably symptomatic in middle age or
later ?(Katsuno et al., 2012)?, however initial symptoms often begin in adolescence, long before clinical
assessment ?(Sperfeld et al., 2002)?. In line with the inhibitory action of the polyglutamine tract on AR
transactivation, tandem CAG repeat length has been correlated to androgen insensitivity in SBMA 
?(Dejager et al., 2002)?. CAG repeat length correlates inversely with age at onset but does not always
correlate to disease severity or progression ?(Doyu et al., 1992; Fratta et al., 2014; Andrew P. Lieberman
et al., 2014; Rhodes et al., 2009)?. Epigenetic contributions to the late onset nature of SBMA are likely 
?(Kondo et al., 2019)?. Progression is gradual and life expectancy is averagely insignificantly decreased 
?(Chahin et al., 2008)?. The breadth of the clinical spectrum and involvement of testosterone target tissue
likely reflects the ubiquitous expression of the androgen receptor throughout the central nervous system
and peripheral tissues ?(H. Adachi, 2005)?. The complex clinical picture that results has been described
by Manzano et al. as an "interplay between differentially affected tissues, which struggle to cooperate to
maintain homeostasis" ?(Manzano et al., 2018)?.

Characteristic symptoms are proximal and distal weakness and proximal muscle atrophy. Bulbar muscle
involvement accounts for dysarthria, dysphagia, hypernasality and decreased range of pitch and loudness 
?(Pennuto & Rinaldi, 2018; G. Querin et al., 2017)?. Other common symptoms include fasciculations,
cramps, tremor, reduced or absent deep tendon reflexes, loss of sensory functions in extremities, loss of
vibratory sensation, tongue wasting, gynecomastia, sexual dysfunction, testicular atrophy and fertility
problems including oligospermia/azoospermia. ?(Dahlqvist et al., 2019; Dejager et al., 2002; Fratta et al.,
2014; Kennedy et al., 1968; Polo et al., 1996; G. Querin et al., 2017; Udd et al., 2009)?. Symptoms
including gynecomastia, hand tremors, muscular cramps, myalgias, premature exhaustion during physical
exercise and feet numbness can present before the onset of weakness ?(Finsterer & Scorza, 2019;
Finsterer & Soraru, 2015)?. Libido loss presents and can be unappreciated due to the late onset ?(G.
Querin et al., 2017)?. Abdominal obesity, dyslipidemia, glucose intolerance and liver problems represent
a commonly seen metabolic involvement and these patients can frequently develop metabolic syndrome 
?(Dejager et al., 2002; Pennuto & Rinaldi, 2018; G. Querin et al., 2017; Rosenbohm et al., 2018)?. Heart
rhythm abnormalities including Brugada syndrome can occur ?(Araki et al., 2014; Giorgia Querin et al.,
2015)?. Alterations in bone mineral density including lumbar density scores above controls, lumbar
and/or femoral osteopenia, and osteoporosis are reported without correlation to LH, testosterone or
vitamin D determinations. The frequency of lower urinary tract symptoms exceeds that of the general
population significantly ?(Giorgia Querin et al., 2015)?. Interestingly, AR133Q knock-in mouse models
exhibit significant atrophy and abnormal spontaneous myotonic discharges in the levator
ani/bulbocavernosus (LABC) muscles, suggesting alteration to lower urinary tract muscle membrane
excitability that could be responsible for the obstructive LUTS and associated death in these models 
?(Yu, 2006)?. Hypospadias has been suggested as potentially underreported feature of the SBMA
phenotype ?(Nordenvall et al., 2016)?.
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While traditional focus has been on the muscular symptoms and long-associated motor neuron
degeneration ?(Lombardi, Querin, et al., 2019)?, this can be misleading ?(Finsterer & Scorza, 2019;
Sperfeld et al., 2002)?. The systemic, endocrinological and neuropsychological effects are now known to
be of equal importance to both the clinical picture and the quality of life of patients ?(G. Querin et al.,
2017; Giorgia Querin et al., 2018)?. SBMA can manifest in absence of neuromuscular complaints or
symptoms, presenting with an endocrine phenotype comprising of symptoms including gynecomastia,
testicular atrophy, hypercholesterolemia and diabetes mellitus ?(Battaglia et al., 2003)?. Nonclassical
symptoms including erectile dysfunction can be cited by patients as amongst their most disabling
symptoms ?(Fratta et al., 2014)?. Sexual dysfunction across domains including orgasm function, erectile
function and satisfaction is commonly reported ?(Dahlqvist et al., 2019)?. In a large cohort of 73 patients,
excluding ten patients who refused to answer, all patients were found to have mild-to-severe erectile
dysfunction per IIEF (mean 15.9±7.6; range 0–25) ?(Giorgia Querin et al., 2015)?.

SBMA patients can display peculiar psychological characteristics including diffidence, marked emotional
sensitivity and concentration problems ?(G. Querin et al., 2017)?. Soukup et al. reported systematic
evidence of differing frontotemporal cognitive functioning in SBMA patients compared to age and
education matched controls ?(Soukup et al., 2009)?. Despite similar intelligence per IQ assessment,
SBMA patients were found to significantly underperform in a battery of neuropsychological tests.
Interestingly, while this varied from mild to severe impairment and "astonishingly widespread", most
were subclinical in expression. Executive function and short- and long-term memory were found to be
domains exhibiting pronounced deficits, while attentional control was also deficient. Consistent with
prefrontal deficits, Di Rosa et al. utilised control matched neuropsychological testing, reporting a
significant weakness in cognitive empathy but not in areas of affective empathy in SBMA patients. They
suggest even mild impairment in mentalising may have profound implications for interpersonal relations,
particularly when such changes are not recognized as the consequence of neural processes ?(Di Rosa et
al., 2014)?. In a small cohort of SBMA patients, Romigi et al. reported a decrease in both subjective and
objective sleep quality parameters compared with healthy age and sex matched controls. 77.8% of SBMA
patients subjectively experienced disturbed sleep per the Pittsburgh Sleep Quality Index. Objectively,
time in bed, total sleep time and sleep efficiency were significantly lower in SBMA patients, with a
significantly higher apnea-hypopnea index. SBMA patients showed periodic limb movements.
Obstructive sleep apnea was evident in a majority of patients, REM sleep without atonia was observed in
22% of patients ?(Romigi et al., 2014)?.

Although CAG repeat length is not held to be strictly associated with severity, individual case reports of
patients with abnormally long CAG repeat lengths present with severe phenotypes that have expanded the
clinical understanding of SBMA. Grunseich et al. reported a 29-year-old SBMA patient with a long 68
CAG repeat expansion. The patient experienced early onset of multisystemic symptoms. He had been
born with penile congenital abnormality. He developed gynecomastia by 16 and muscle weakness, fatigue
after exercise, fasciculations, cramping, and tremor by age 18. He experienced ejaculation difficulties,
testicular atrophy, burning neuropathic pain and dysesthesia in the feet and fingertips, reduced sweating
and decreased facial hair growth. Tongue atrophy was noted, and weakness was observed in the
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orbicularis oculi and orbicularis oris. He exhibited perioral fasciculations, severe limb weakness
bilaterally, difficulty standing on his heels and ankles, and loss of temperature and vibratory sensation in
the fingers and toes. Abnormalities were seen on muscle MRI. Evidence of autonomic dysfunction
suggestive of small fiber dysfunction was determined, including negligible sweat responses and
orthostatic tachycardia without blood pressure changes or symptoms ?(Grunseich et al., 2014)?. Similarly,
Madeira et al., reported a phenotype of an exceptional 72 CAG repeat length. This man was 53 years old
and underweight. He complained of shortness of breath, difficulty breathing while lying down and
paroxysmal nocturnal dyspnea. He had a micropenis, small testicles and progressive testicular failure.
Deep tendon reflexes were absent. Fasciculations, weakness and atrophy were apparent in the tongue,
masseter muscles and limb muscles. Neck muscles were severely weakened. He had osteopenia, with low
bone mass densities in the lumbar spine and femoral neck. He additionally had dyslipidaemia ?(Madeira
et al., 2017)?. These phenotypical presentations highlight the broad effects associated with alteration of
androgen-dependant signaling pathways.

Reliable biomarkers for SBMA remain a challenge ?(Manzano et al., 2018; Giorgia Querin et al., 2018)?,
but common findings have been established. Creatine-Kinase will often be elevated ?(G. Querin et al.,
2017)?. Testosterone, LH and FSH are generally found to be within normal bounds, although T and DHT
can be high or low in some patients ?(Hashizume et al., 2012; Ni et al., 2015; Giorgia Querin et al., 2015;
Rhodes et al., 2009)?. Patterns of androgen insensitivity per biomarkers are seen in some patients as per
the Androgen Sensitivity Index, and have been reported to correlate positively with CAG repeats 
?(Dejager et al., 2002; Giorgia Querin et al., 2015)?. High proportions of patients will show lipid and
metabolic abnormality, including elevated total cholesterol, triglycerides, fasting glucose and insulin 
?(Dejager et al., 2002; Francini-Pesenti et al., 2018; Guber et al., 2017; Giorgia Querin et al., 2015)?.
Signs of non-alcoholic fatty liver disease including excess deposition of triacylglycerol in the liver have
been reported as a near universal finding, even in patients with normal BMI ?(Guber et al., 2017)?. The
observation that hepatic AR knockout models that develop steatosis and insulin resistance ?(Lin et al.,
2008)?, as well as multisystem disruption of metabolic homeostasis, is suggestive of direct disease
involvement in the observed NAFLD in SBMA patients. Serum hydroxyvitamin D was reported as low in
a majority of patients in a large cohort ?(Giorgia Querin et al., 2015)?. Interestingly, the markers of
neuronal damage phosphorylated neurofilament heavy chain and neurofilament light chain levels are not
elevated in serum of SBMA patients or animal models and do not correlate with phenotypical severity 
?(Lombardi, Bombaci, et al., 2019; Lombardi, Querin, et al., 2019)?.

Muscle involvement is diffuse. Myopathic evidence present upon muscle biopsy ?(Manzano et al., 2018)?
is supportive of a conserved pathological mechanism that likely underlies a vast proportion of clinical
manifestations ?(Baniahmad, 2015; G. Querin et al., 2017)?. In a 40-patient cohort, muscle fat content
was significantly higher than controls in the semitendinosus, semimembranosus, biceps femoris longus,
triceps surae and spared sartorius, gracilis, biceps femoris brevis, and tibialis anterior. Affected leg
muscles showed greater involvement than arm muscles, and muscle fat content correlated to muscle
strength and function tests, disease duration and severity, and creatine kinase and testosterone levels 
?(Dahlqvist et al., 2019)?. White matter alterations in the corticospinal tracts, limbic system, brainstem
and cerebellum have been demonstrated via quantitative brain imaging ?(Kassubek et al., 2007; Unrath et
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al., 2010)?, while voxel based morphometry has identified gray matter atrophy in the frontal lobes and
brainstem ?(Pieper et al., 2012)?. Skeletal muscle, known to be AR enriched, is a notable site of toxicity
and tissue biopsy has demonstrated denervation, muscle fiber degeneration and myogenic changes in
addition to neurogenic atrophy ?(Giorgia Querin et al., 2015; Sorarù et al., 2008)?. Somatosensory
evoked potentials are regularly abnormal, while electromyography and nerve conduction study will often
reveal low sensory nerve amplitudes, decreased compound motor action potentials and evidence of
diffuse denervation ?(BUECKING, 2000; Kachi et al., 1992; Pennuto & Rinaldi, 2018; Polo et al.,
1996)?. Broad involvement of sensory neurons and autonomic skin denervation were reported with
abnormal sweat test results ?(Manganelli et al., 2007)?. These findings align with AR accumulation and
degeneration in autonomic regions including the dorsal root ganglia ?(Antonini et al., 2000)?.

The mechanisms of PolyQ AR toxicity are yet to be fully elucidated but it appears that levels of AR
expression are directly correlated to muscular atrophy ?(Manzano et al., 2018)?. Both testosterone or
DHT binding to the polyQ AR and its subsequent translocation of the expanded protein to the nucleus is
required for toxicity as demonstrated in vivo ?(Katsuno et al., 2002; Nedelsky et al., 2010; Takeyama et
al., 2002)? and in vitro ?(Becker et al., 2000; Darrington et al., 2002; Stenoien et al., 1999; Walcott &
Merry, 2002)?. Higher androgen levels in males are therefore responsible for the symptomatic
presentation, and female carriers will ordinarily remain asymptomatic ?(Chevalier-Larsen, 2004; Schmidt
et al., 2002)?. In humans, exogenous androgen administration does not usually relieve clinical symptoms 
?(Neuschmid-Kaspar et al., 1996)? and has been reported to have reversibly worsened symptoms 
?(Kinirons & Rouleau, 2008)?. Administrating testosterone to previously asymptomatic transgene SBMA
female mice induces a distinct increase of symptoms similar to the level of untreated males, including
progressive emaciation and motor dysfunction, pathological markers and nuclear localisation of
pathogenic AR ?(Katsuno et al., 2002)?, demonstrating the androgen dependency of the pathology.

AR polyQ expansion involves a partial loss of the normal transcriptional activity of the AR 
?(Chamberlain et al., 1994; Kazemi-Esfarjani et al., 1995; A. P. Lieberman, 2002; Mhatre et al., 1993)?
and this contributes to the pathology. However, neither loss of AR function nor androgen ablation is
adequate for the pathology, and men with complete androgen insensitivity syndrome do not exhibit
neurological symptoms ?(Chivet et al., 2019; Quigley et al., 1992)?. As such, the disease entails a
proteotoxic gain of function ?(A. P. Lieberman, 2002; Manzano et al., 2018; Nath et al., 2018; Pennuto &
Rinaldi, 2018)?. The mutant AR disrupts many downstream pathways, and alteration of diverse cellular
processes including transcription, RNA splicing, axonal transport, ion homeostasis, and mitochondrial
function likely coalesce to cause toxicity ?(Borgia et al., 2017; Chua et al., 2015; Eftekharzadeh et al.,
2019; Malik et al., 2019)?. Diffuse nuclear accumulation of mutant AR is frequent and extensive in
SBMA, occurring in a wide array of CNS nuclei and visceral organs ?(H. Adachi, 2005; Doi et al., 2013;
Katsuno et al., 2002)?. Nuclear accumulation of AR is reported to be important to the pathology 
?(Nedelsky et al., 2010)?. Animal models have revealed export of the pathogenic AR protein is impaired
in the absence of any cell-wide disruption of nucleocytoplasmic transport ?(Arnold et al., 2019)?.
Significant age, hormone and CAG repeat length dependent impairment of multiple ubiquitin-proteasome
genes have been demonstrated to result from a toxic gain of AR function, progressively compounding
toxicity through a failure of polyQ AR clearance. Diminished expression of numerous components of the
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ubiquitin-proteasome pathway including ubiquitin receptors, proteolytic subunits and assembly scaffold
proteins were recently reported in skeletal muscle of AR113Q male mice. This involved significant
reduction of ~30% of constitutive proteasome subunits and ~20% of E2 ubiquitin conjugating enzymes,
with no upregulation observed and a non-significant trend towards reduced expression in many more
subunits ?(Nath et al., 2018)?. This differentiates AR-mediated toxicity from skeletal muscle atrophy
following cachexia, renal failure, surgical denervation, fasting, tumors, and diabetes, which all exhibit an
up-regulation of proteasome subunits ?(Sacheck et al., 2006)?. 

Using cell culture and animal models, androgen axis targeted therapeutic strategies have been explored.
Androgen ablation and treatment with AR antagonists are beneficial and ameliorate the SBMA
pathogenicity ?(Baniahmad, 2015)?, demonstrating phenotypical improvement beyond simply a slowing
of the disease progression. The antiandrogen flutamide was protective of androgen-mediated toxicity
across several SBMA models, preventing or reversing motor dysfunction of transgene models and
extending the life of knock-in males significantly ?(Renier et al., 2014)?. Similarly, castration of AR97Q
males dramatically prevented phenotypical presentation, with these mice showing significantly extended
life, ameliorated muscle atrophy and body size reduction, virtually absent motor impairment, and
markedly reduced nuclear AR staining intensities as compared to sham operated AR97Q mice displaying
significant pathology ?(Katsuno et al., 2002)?. Castration was also remarkably effective in 112 and 113
glutamine models ?(Chevalier-Larsen, 2004; Nath et al., 2018)?. Leuprorelin has also been demonstrated
as effective in transgenic mice ?(Katsuno et al., 2003)?. 14 years of prospective quantitative measurement
of a single SBMA patient who underwent leuprolide acetate treatment for the initial 7 years before
undergoing orchiectomy indicated that long term androgen deprivation slows disease progression when
compared to existing control data ?(Hijikata et al., 2019)?. In transgenic mice, SBMA symptoms have
been shown to be ameliorated through IGF-1 treatment or overexpression in muscle, which promotes AR
degradation through phosphorylation by Akt ?(Palazzolo et al., 2009; Rinaldi et al., 2012)?. Treatment
with genistein, an antiandrogenic soy isoflavone, was demonstrated to promote dissociation of the AR
from the co-regulator ARA70 and attenuate pathology and improved survival in 97Q mouse models 
?(Qiang et al., 2013)?. Modulation of activation function-2 of the AR with the compound MEPB rescued
toxicity in a drosophila model of SBMA and showed a dose-dependent rescue from loss of body weight,
rotarod activity and grip strength, neuronal loss, neurogenic atrophy and reversed testicular atrophy in a
SBMA mouse model ?(Badders et al., 2018)?. It is likely that the new generation of Selective Androgen
Receptor Degraders in development for use in castration resistant prostate cancer ?(Han et al., 2019;
Ponnusamy et al., 2017)? will be of interest with regard to a potential treatment for SBMA. ASC-J9, an
AR degrader enhancer with structural similarity to curcumin ?(Cheng et al., 2018)?, has already been
shown to rescue SBMA motor symptoms and improve sexual function in transgenic 97Q mice ?(Yang et
al., 2007)?.

In cell models, targeting the heat shock protein families, molecular chaperones to the AR, suppresses
aggregation and enhances polyQ AR degradation, making them a potential therapeutic target ?(Bailey,
2002)?. Mutant AR forms a Hsp90 chaperone complex preferentially compared to wild type AR, and use
of a Hsp90 inhibitor, Tanespimycin, has been demonstrated to be effective at degrading polyQ AR in
vitro and in vivo modelling, markedly ameliorating motor impairment ?(Waza et al., 2005)?.
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Tanespimycin, however, has broad interruptive effects and is not well tolerated ?(Yang et al., 2007)?, and
Hsp90 inhibitors can induce the degradation of hundreds of client proteins that are likely needed for
diverse processes ?(Eftekharzadeh et al., 2019)?. Recently, Eftekharzadeh et al. suggested that Hsp70
activation with small molecules such as JG-98 or JG-294 is a safer potential approach to leveraging
protein quality control mechanisms to degrade the AR in SBMA and other androgen-mediated conditions 
?(Eftekharzadeh et al., 2019)?. Hsp70 overexpression is similarly seen to significantly ameliorate SBMA
symptoms in a transgenic mouse model by reducing the amount of nuclear-localized mutant AR protein 
?(Hiroaki Adachi et al., 2003)?. Arimoclomol, a co-inducer of the heat shock response limited to stressed
cells, has been observed to delay disease progression in a mouse model of SBMA through the prevention
of motor neuron degeneration and alleviation of muscle atrophy ?(Rinaldi et al., 2015)?. Trehalose has
been suggested as a potential therapeutic agent, and in vitro studies suggest beneficial effects resulting
from increased autophagic clearance of the mutant AR ?(Cicardi et al., 2019)?. Sodium butyrate, a histone
deacyletase inhibitor capable of modulating AR expression ?(Paskova et al., 2013)?, showed
improvement in motor deficits and histopathological impairment of neurons and muscle within an narrow
optimum dose window in transgenic mice ?(Minamiyama, 2004)?. Inhibition of Src kinase, a pathway
upregulated by polyglutamine expansion and AR overexpression, has been demonstrated to mitigate
toxicity in SBMA animal and cell models ?(Iida et al., 2019)?.

Given the significant advancement in the understanding of the pathological mechanisms, a move towards
targeted molecular therapies addressing the systemic pathological processes is likely in the near future 
?(Giorgia Querin et al., 2018)?. To achieve a disease modifying therapy for SBMA, Rinaldi et al. suggest
a coordinated, collaborative effort of researchers with multiple areas of expertise, clinicians, the
pharmaceutical industry and the involvement of patient groups ?(Rinaldi et al., 2015)?.
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AR deregulation as a key pathological driver of PFS?

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/ar-deregulation-as-a-key-pathological-driver-of-pfs/

Induced Wild Type AR Overexpression and the potential relevance of
SBMA to PFS

As discussed, as the CAG trinucleotide sequence extends in the N-terminal domain of the AR, there is a
consequent functional decline in transcriptional efficiency which is seemingly associated with a
compensatory increase in androgen levels. However, at longer repeat lengths, high androgen levels can
exert a deleterious and ultimately toxic response. Crucially, polyglutamine expansion is not the only way
ligand-dependent toxicity can be conferred to the AR protein, and overexpression of the wild type AR can
cause a paradoxical loss of function and toxic gain of function. This is reflective of evidence in other
polyglutamine diseases that point to gain of native protein function underlying pathology ?(Paulson et al.,
2017)?. It is now appreciated that balanced gene expression is vital for homeostasis, and overexpression
of wild-type proteins causes disease states in humans ?(Ohshima et al., 2017; Shastry, 1995)?. Multiple
studies demonstrate that, while seemingly paradoxical, sufficient increases in AR expression converge
with loss of function phenotypes, with an inverse U?shaped curve representative of AR gene dose
response in tissues. The pathological consequence of overexpression of the AR is therefore coherent with
Prelich's observation that overexpression of proteins mimics a loss of function and interferes with its
function antimorphically. The mechanisms by which overexpression causes a mutant phenotype is
therefore of great importance to further understand ?(Prelich, 2012)?.

Generating mice overexpressing AR solely in skeletal muscle, Monks et al. reported the striking and
seemingly counter-intuitive observation that overexpression of the Wild-Type androgen receptor
recapitulates the pathological consequence of polyglutamine expansion despite a polyglutamine repeat
tract comprised of 22 glutamines. Decreased viability was observed in males of all seven transgene lines
but not in females. Interestingly, administration of flutamide to pregnant dams enhanced perinatal
survival, suggesting prenatal androgen activation of the overexpressed AR, not the overexpression per se,
is causative of death. Two transgenic mouse lines of differing WT AR copy number (L78 < L141) were
characterised. L141 males exhibited a far more severe phenotype, corresponding to a significantly higher
AR expression at the mRNA and protein level. Surviving L78 males were functionally comparable to
wild type despite a lower body weight. However, L141 males exhibited a marked phenotype of lower
body weight, curvature of the thoracic spine, severe deficits in motor function and muscle strength, and
early death. Castration dramatically restored function in L141 mice, illustrating the androgen dependency
of the toxicity. Remarkably, although L141 females were apparently unaffected by AR overexpression 
per se, when administered testosterone to the approximate circulating level of male mice, they rapidly
developed a comparable disease phenotype to male L141 mice including motor dysfunction and muscle
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atrophy. Over 9 days of T treatment was fatal to female L141 mice. L78 female mice did not become
symptomatic or atrophic with T treatment, even for prolonged periods. This parallels the asymptomatic
L78 male. This is strongly indicative that the degree of overexpression dictates severity of androgen-
mediated toxicity and, as Monks et al. observe in several contexts, that overexpressed AR confers toxicity
once activated by hormonal ligand ?(Monks et al., 2007)?.

Monks et al. compared differentially regulated genes in myogenic transgene mice and the SBMA AR97
and AR113Q models. Gene expression in the transgene AR-overexpressing muscle revealed similar
deregulation to AR Knock-out muscle, further suggesting that a paradoxical loss of AR function results
from overexpression of the androgen receptor. The finding of overexpression of WT AR reproducing a
phenotype comparable to polyglutamine expansion was noted to be surprising and puzzling considering
SBMA is associated with a loss of AR function whereas overexpression of the AR would typically be
expected to enhance the function of androgen signaling ?(Mo et al., 2010)?. Further striking findings were
provided through investigation of the contributions of native AR interactions to polyglutamine-expanded
AR toxicity in Drosophila models. Nedelsky et al. determined that native interactions at AF-1 of the AR
modify toxicity while AF-2 coregulator interaction and function is essential for toxicity. Expressing AR
in the photoreceptor neurons and accessory pigment cells of the eyes of the developing flies, they
demonstrated a polyglutamine length and ligand-dependent degenerative phenotype. While flies reared on
normal food did not demonstrate pathology, a degenerative phenotype in the posterior margin of the eye
occurred in flies reared on food containing DHT. This androgen and polyQ length dependent degenerative
phenotype of atrophy and functional deficit was further demonstrated in larval tissues including salivary
glands and motor neurons. Crucially, Nedeslky et al. reported that wild-type AR of a 12Q polyglutamine-
length, when expressed at very high levels, resulted in an degenerative phenotype indistinguishable from
that caused by expansion of the AR polyglutamine tract ?(Nedelsky et al., 2010)?. This reflected the dose
dependency and pathological consequence of wild-type AR overexpression well reported by Monks et al.
Furthermore, though generally weaker, expression analysis revealed a similar dysregulation in both
AR12Q+DHT and AR52Q+DHT files, lending further support to a link between an amplification of
native function and the toxicity induced by polyglutamine expansion and is supportive of a conserved
mechanism. Interestingly, quantitative analysis did not reveal a correlation between the amount of high
molecular weight species and neurodegeneration in their Drosophila model. This is in line with the lack
of AR positive aggregates reported in transgenic mice that recapitulated the SBMA phenotype ?(Monks
et al., 2007)?. The presence of aggregates was in previous decades presumed to be a driving factor in
pathogenesis of SBMA, however this is no longer the case and a direct mechanistic involvement is
controversial ?(Todd & Lim, 2013)?. Providing another parallel between the effect of polyglutamine
expansion and wild type overexpression, Halievski et al. demonstrated that in mice expressing a human
androgen receptor of 97 CAGs and the wild-type overexpressing myogenic mice, several common
transcriptional effects were seen, such as robust downregulation of BDNF and NT-4 transcripts.
Remarkably, similar effects were seen indistinctly across both synaptic and extrasynaptic domains,
suggesting a broad effect and involvement of common deleterious AR-mediated mechanisms across cell
types ?(Halievski et al., 2019)?.

While it might be expected AR overexpression would result in a hyper-masculine socio-sexual
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phenotype, Swift-Gallant et al. demonstrated significant reductions of male-typical aggressive and sexual
behaviours in transgene AR overexpressing mice. This non-linear androgen response was curiously
reflective of loss of AR function. Interestingly, same-sex anogenital investigation was increased and male-
typical preferences for female olfactory cues were disrupted in globally overexpressing mice but not mice
only overexpressing AR in neural tissue, suggesting a direct role of non-neuronal AR in mediation of
socio-sexual behaviours. A decrease in testosterone production is not a sufficient explanation for the
mechanistic consequences of overexpression on masculine physiological and behavioural phenotypes and
the many convergences with loss of function models, and reduced testosterone was not routinely observed
in models of overexpression ?(Swift-Gallant et al., 2016)?. Monks and Swift-Gallant considered a
uniform global loss of AR function unlikely, proposing a cellular mechanism that would be differentiated
according to affected neurological or physiological tissue and system. This would implicate regional
variations, possibly including site-specific cofactor influences and differential transcriptional effects
resulting from regional epigenetic changes. Additionally, overexpression of AR has been suggested as a
plausible mechanistic route to alteration in neurosteroid synthesis ?(Monks & Swift-Gallant, 2018)?.

Considerable evidence exists to support an overlapping androgen dependent toxicity in the contexts of
AR polyglutamine tract expansion and overexpression of the wild-type AR, and a loss of function
coincident to both insufficient and excessive AR signaling. It is therefore highly significant that both
hypogonadism ?(Seftel, 2005)? and the multi-systemic symptom profile of SBMA ?(Querin et al., 2017)?
bear a clear resemblance to the broad symptomatology of PFS. However, it is important to consider that
there are notable areas of presentation and progression in which the disease states of PFS and SBMA
differ. Neurocognitive symptoms are profoundly more severe in PFS than are reported in SBMA,
although these domains of disease involvement are not without overlap as we have illustrated. Tongue
atrophy is not reported in PFS. These differences are likely inherent to the aetiologies of the respective
diseases: An endocrine disruption leading to epigenetic dysregulation in PFS and a genetic glutamine
repeat sequence as causative factor in SBMA. While SBMA is a characteristically slow progressing
condition, PFS can, in many cases, onset extremely rapidly with the discussed "crash". After this onset, an
initial period of weeks or months during which the pathology is often rapidly progressive to what patients
refer to as a "baseline" state occurs. Atrophy of androgen dependent tissue and physiological changes are
often reported over this time. Beyond this, PFS is not always markedly progressive, with some patients
experiencing improvement or stabilisation of their symptoms to variable points over subsequent months
or years. As we will discuss, exogenous testosterone can sometimes cause symptomatic intensification,
and significant and rapid phenotypical deterioration with additional symptomatic physiological domains
can occur following exposure to further antiandrogenic endocrine disrupting substances. Previously
discussed as the "crash", the majority patient experience of a intensification or development of symptoms
after cessation of the drug may reflect the return of 5a-dihydrotestosterone to physiological levels in the
presence of the newly uninhibited 5-alpha reductase enzymes. In the myogenic models discussed, when
male physiological levels of androgens were administered to female L141 mice a severe disease state is
rapidly induced, while the L78 mice were largely asymptomatic. A site-specificity and expression level-
dependency of induced AR overexpression therefore serves as a compelling explanation for the large
variation in the toxic post-drug phenotype, manifesting as either a continuation of on-drug side effects or,
more commonly, the crash, which can vary from an onset of sexual dysfunction, libido loss, anxiety and
depression to a devastating and disabling physiological and psychological alteration including cognitive
impairment of executive function, derealisation, anhedonia, panic attacks, memory loss, total insomnia,
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dysautonomia, atrophy of androgen-responsive tissue and metabolic changes.

A "malignancy switch" for the androgen receptor?

In the absence of serum endocrine or other toxicological findings that could account for the pathological
features of PFS ?(Irwig, 2014; Melcangi et al., 2017)? we suggest a biological event during use of
finasteride is causing an often permanent change in the ordinary metabolic function of cells through
epigenetic alteration. Although this is controversial to suggest, the potential severity of the disease cannot
be overstated, and in a a significant number of cases the health problems are severe, progressive, do not
resolve with time and entail a peculiar endocrine fragility. We hypothesise underlying pre-existing
genetic and/or epigenetic factors differentiate those who are prone to developing PFS, and this
predisposition effects deleterious epigenetic modifications by means of a conserved mechanism upon
significant reduction of intracellular androgen-dependent transactivation through various modes of action
including but not limited to 5alpha reductase inhibition. These vectors include downregulation of AR
mRNA, an induced increase of protein degradation, upregulation of enzymes capable of reducing
endogenous AR ligand to inactive androgen metabolites and suppression of steroidogenic enzymes. We
further suggest the necessary exposure and severity of symptomatic outcomes are dependent on
interindividual differences within this/these underlying predisposing factor(s) and the resulting degree of
persistent dysregulation of the androgen receptor on a site-specific basis.

The epigenetically determined fate of somatic cells is not terminal. Epigenetic barriers preservative of
cellular integrity were famously visualised by Conrad Waddington's epigenetic landscape, which
described a ball running down valleys in determination of its ultimate differentiated state ?(Slack, 2002)?.
However, these can be overcome given the correct stimuli, and the past decades have seen rapid
advancements in cellular reprogramming methods ?(MacArthur et al., 2009)?. As chemicals are capable
of inducing reversal of cell lineage, Kanherkar et al. investigated the possibility of permanent epigenetic
alterations occurring following exposure to pharmacological agents. HEK-293 cells cultured in the SSRI
antidepressant citalopram revealed significant differential methylation in hundreds of genes. They
proposed the term "pharmaceutical reprogramming" to describe a partial dysdifferentiation event resulting
from drug-induced methylation changes that consequently alter cellular function and integrity 
?(Kanherkar et al., 2018)?. Evidence demonstrates adult sex typical behaviour can be altered in mammals
under certain conditions and may be a function of epigenetic maintenance and gene expression with
behavioural impacts ?(McCarthy, 2019)?. In relation to androgen signalling, significant recent work has
suggested that biologically meaningful differences that directly influence behaviour and function
pertaining to sexual traits can arise from epigenetic alteration to the program of the androgen receptor 
?(Schuppe et al., 2020)?.
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As well as fibrotic changes in the penis, Enatsu et al. reported a reduction of AR and an increase in ER
expression in the prostate of young rats administered dutasteride, speculating that an improper response to
androgens upon restoration could underlie the sexual dysfunction in PFS owing to altered local receptor
expression ?(Enatsu et al., 2016)?. This study demonstrated a deleterious influence exerted by 5alpha
reductase inhibition in young rats that entailed morphological alterations to sexual organs and epigenetic
remodelling that trended towards the effect of castration. However, many factors exclude the typical
response to prolonged 5alpha reductase inhibition from being an applicable model for the behaviour of
PFS. These include the rarity of PFS amongst 5ari users, the clinical picture of PFS including
pathological development and/or progression of the disease following cessation, a prevalence in younger
men using a lower dose, the brevity of exposure in some of the most severely affected cases, the
commonly reported responses of PFS patients to trialled therapies, and the previously reported
determination of persistent and significant upregulation of the AR in prepuce tissue of PFS patients.
Nevertheless, the parabolic nature of AR expression would suggest Enatsu's hypothesis of an induced
dysfunction in local androgen response owing to epigenetic remodelling is plausible. Finasteride has
previously been shown to upregulate prostate epithelial AR significantly in BPH patients after 30 days of
exposure ?(Hsieh et al., 2011)?. Corradi et al. demonstrated that Finasteride induced a persisting
overexpression of the AR and important alterations in the tissue microenvironment of the prostate gland
in young gerbils. Across three stages of postnatal development, the content and intensity of AR
immunostaining were noticeably elevated, particularly in epithelial cell nuclei. Both the tissue changes
and AR overexpression proved persistent. Interestingly, when contrasted with their respective control
groups, a greater increase in AR nuclear intensity could be observed in the young (8% to 61.5%)
Finasteride administered experimental group as opposed to the old Finasteride administered experimental
group (66% to 72.5%) at the conclusion of the post-treatment phase ?(Corradi et al., 2009)?.

Coskuner et al, reviewing literature on persistent sexual symptoms in a subset of 5alpha reductase
inhibitor users, considered tissue-specific epigenetic effects likely given the persistence of symptoms 
?(Coskuner et al., 2019)?. In considering the mechanistic origins of the development of PFS following
endocrine disruption with Finasteride, Traish proposed that androgen deprivation and depletion of the
substrate precursors for the 3?-hydroxy-steroid dehydrogenases causative of a block in
neurosteroidgenesis, attenuating the function of steroid and neurotransmitter receptors and inducing
changes in the expression of a host of gene products, eliciting epigenetic changes manifested in histone
acetylation, DNA methylation and upregulation of the AR. Traish thus suggests these changes, together
with the consequent depletion of neurosteroids, manifest in the development of PFS in susceptible
individuals ?(Traish, 2018)?. Di Loreto et al had previously suggested that it was tempting to speculate
that PFS patients have triggered processes associated with advanced age by pharmaceutical androgen
deprivation ?(Di Loreto et al., 2014)?. The natural decline of testosterone values with ageing has been
well established ?(Kaufman & Vermeulen, 2005)?. PFS may thus represent an aberration of such
processes, resulting as an adaptive epigenetic response to the pre-receptor disruption of androgen
signaling during finasteride use.

Our stated hypothesis for PFS as an epigenetic adaption induced by pharmaceutically interrupted
androgen signalling accounts for a deregulated epigenome and the onset and/or symptomatic
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intensification following finasteride withdrawal, often after a brief resolution of symptoms, which
standardised questionnaires including our own data indicate is an intrinsic feature of the syndrome
(Propeciahelp Post-Drug Syndrome Survey: Data not provided). Cessation of finasteride will result in a
surge in androgen production owing to the newly uninhibited 5a-reductase enzyme. Presuming a 60%
reduction of basal DHT levels during finasteride use, cells epigenetically adapted to a depletion of
androgenic signaling owing to the pharmacological reduction of DHT would be exposed to a 300%
increase in DHT upon cessation. As molecular level investigation has revealed a persistent elevation in
expression of the androgen receptor in symptomatic tissue of a PFS cohort, this may entail a deleterious
ligand-dependent effect in alignment with the demonstrated in vitro and in vivo models discussed.
Application of such a conceptual framework to the pathology of PFS is not unprecedented. Professor
Charles Ryan explained the tissue response to testosterone in terms of a "bell curve" in his book The
Virility Paradox. He wrote of PFS: "I think this is what we are seeing here. With a greater concentration
of receptors, the organ becomes more sensitive to testosterone and at a certain point, paradoxically, that
sensitivity may shut down" ?(Ryan, 2018)?.

We hypothesise that a loss of function and toxic gain of function manifests tissue specifically in a broad
spectrum of clinical endpoints, from functional impairment to atrophy in affected tissues. In consideration
of this, we would expect future gene expression analysis of symptomatic tissue in severely affected
patients to reveal widespread dysregulation of gene expression. A consideration of how a dysregulation of
the AR and associated epigenetic remodelling might occur as an aberrant result of antiandrogenic
endocrine disruption, and how it may influence broader gene expression, is therefore necessary. This can
be contextualised via known molecular mechanisms.

The most well recognised epigenetic adaptations occurring as a result of androgen deprivation therapy is
in the context of castration resistant prostate cancer. As a driver of epithelial cell growth and proliferation
as well as a fundamental aspect of prostate cancer progression, the androgen receptor axis has been the
predominant therapeutic target in prostate cancer for over 75 years ?(Kim & Ryan, 2012; Takeda et al.,
2018)?. Patients develop resistance to androgen deprivation therapy after a period of this first line
treatment, a state with very poor prognosis known as castration resistant prostate cancer. Second
generation antiandrogen treatments have been developed, however nearly all men also develop resistance
to this, suggestive of a mechanistic response irrespective of the agent ?(Robinson et al., 2015)?. Although
not always observed, amplification of the AR is the most common mechanism of castration resistance 
?(Takeda et al., 2018)? and is the only consistent gene expression change associated with hormone
refractory disease ?(Chen et al., 2003)?. The amplification of the AR occurs during androgen deprivation
therapy ?(Friedlander et al., 2011; Visakorpi et al., 1995)? or antiandrogen treatment ?(Coutinho et al.,
2016)? and represents an adaptive response to the low androgen environment ?(Perner et al., 2015;
Ruggero et al., 2018; Teply et al., 2018)? that sensitizes cells to lower levels of hormone ?(Waltering et
al., 2009)?. Interestingly, low, rather than high, endogenous testosterone levels have been associated with
poor prognostic features in prostate cancer and disease reclassification during active surveillance 
?(Amadi et al., 2018; San Francisco et al., 2014)?. Several lines of evidence suggest low levels of
androgen may predispose to more aggressive tumours ?(Swerdloff et al., 2017)?. Gravina et al. provided
evidence that epigenetic mechanisms can contribute to castration resistant phenotypes, demonstrating that
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pca cell models in androgen-deprived medium or bicalutamide progressively increased DNMT
expression, which increased in proportion to AR upregulation. These findings were verified in patient
tissue. DMNT was additionally shown to be regulated by AR, as siRNA AR interference greatly reduced
DNMT modulation ?(Gravina et al., 2011)?. 

Chen et al. hypothesised that any one of a number of primary molecular events that alter AR activity and
increase AR mRNA could represent a common final pathway for castration resistance in PCa. In support
of this, it was demonstrated that LNCaP cells altered to express a threefold greater level of AR grew in
low androgen concentrations whereas LNCaP cells did not unless supplemented with androgen,
confirming that AR overexpression alone confers castration resistance. In addition, they demonstrated
that the androgen receptor must bind its ligand to confer hormone-refractory growth. LBD mutant LNCaP
constructs did not exhibit hormone-refractory growth beyond vector controls even at ten-fold increases of
AR expression levels. Interestingly, AR antagonists, in the circumstance of overexpression, induced
certain androgen regulated genes ?(Chen et al., 2003)?. This paradoxical response is reflected in the
apparent vulnerability CRPC cells exhibit to supraphysiological androgens. Teply et al. demonstrated
clinical response and short-lived resensitisation to enzalutamide through bipolar androgen therapy using
exogenous testosterone ?(Teply et al., 2018)?. Similarly, Christensen et al. reported a remarkable clinical
and prostate-specific antigen response to a combination of high doses of testosterone and radium 223 in a
patient with metastatic CRPC whose disease had progressed while receiving a number of antiandrogenic
therapies ?(Christensen et al., 2019)?. ctDNA consistently showed a high degree of AR amplification.
These findings suggest that the switch to a hormone refractory state entails a markedly different response
to ligand.

Large scale sequencing studies have shown over 90% of cases of advanced CRPC exhibit overexpressed
or altered AR, alongside significant alteration to genes involved in histone rearrangement and chromatin
modification ?(Barbieri et al., 2012; Braadland & Urbanucci, 2019; Grasso et al., 2012; Robinson et al.,
2015; Taylor et al., 2010)?. Chromatin structure is at least partially definitive of a cell's transcriptional
program, and determines vast networks of regulatory elements tissue-specifically ?(Pihlajamaa et al.,
2015)?. Chromatin relaxation is part of an adaptive response that increases the probability of genomic
access and transcription, and enables continued function in a situation in which sufficient androgens and
androgen signaling are therapeutically reduced ?(Braadland & Urbanucci, 2019)?. Patterns of open
chromatin differ in CRPC to BPH or PCa samples, with large interindividual variance in CRPC ?(Alfonso
Urbanucci et al., 2017)?. Braadland and Urbanucci suggest that selective or adaptive remodelling occurs
mainly upon treatment challenge with AR-targeted therapies ?(Braadland & Urbanucci, 2019)?.
Sequencing in independent AR overexpressing models by Urbanucci et al. revealed genome wide
increases in open confirmations of chromatin and an increased opening at androgen responsive binding
sites. Androgens further increased this chromatin opening, suggesting ligand potentiates an AR-driven
chromatin remodelling in the context of AR overexpression ?(Alfonso Urbanucci et al., 2017)?. This
represents a potential "feed forward" mechanism in which the overexpressed AR further facilitates
chromatin remodelling that allows the AR greater access and increased binding at the genome 
?(Braadland & Urbanucci, 2019)?. Additionally, progression to CRPC entails a significant
reprogramming of the AR cistrome ?(Pomerantz et al., 2015; Sharma et al., 2013)?.
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Mechanistic alteration of master regulators of the epigenome have been established to play a key role via
increasing AR transcriptional activity ?(Ruggero et al., 2018)?, and their behaviour can be context
sensitive. The chromatin remodelling enzyme lysine-specific demethylase 1 has emerged as having a dual
role given its context-sensitive promotive or repressive effects on AR ?(Cai et al., 2011; Metzger et al.,
2005)?. High androgen levels have been demonstrated to cause AR-mediated recruitment of LSD1 to
facilitate gene silencing via negative autoregulation of the AR gene ?(Cai et al., 2011)?, while in the
context of CRPC this feedback loop is apparently broken given that low androgen levels drive AR
overexpression ?(Ruggero et al., 2018)?. LSD1 coactivator or corepressor activity is influenced by post-
transcriptional modifications, such as its phosphorylation status which can switch the enzymes substrate 
?(Metzger et al., 2007; Shi et al., 2004)?. The tyrosine kinase Src, upregulated in CRPC ?(Siu et al.,
2016)?, inactivates the AR corepressor LCoR that ordinarily downregulates AR in response to ligand.
This subsequently activates AR at the chromatin level in CRPC ?(Asim et al., 2011)?. A large number of
micro-RNAs have been identified to act as post-transcriptional regulators of the AR ?(Perner et al.,
2015)?. The miRNA miR137 regulates an androgen-mediated feedback loop that inhibits a large network
of crucial AR coregulators in normal prostate epithelia, while epigenetic loss of miR137 in CRPC leads to
coregulator and, consequently, AR overexpression ?(Nilsson et al., 2015)?.

It is notable that, in contrast with other DNA binding elements, the AR is able to initiate epigenetic
modification of chromatin by itself ?(Tewari et al., 2012)?. Higher AR levels increase AR's genome-wide
binding to chromatin upon stimulation with low concentration of ligand ?(A Urbanucci et al., 2011)?. AR
overexpression recruits AR and the basic epigenetic machinery to the chromatin to alter histones at AR
binding sites and favour chromatin accessibility in the presence of low androgen levels ?(Alfonso
Urbanucci et al., 2011)?. Chromatin remodeling proteins such as FOXA1 and HOXB13 are also known to
co-localise with AR ?(Stelloo et al., 2017)? and are capable of recruiting acetylating and methylating
coregulators including CBP/p300 and MLL ?(Braadland & Urbanucci, 2019)?. Many coregulators of the
AR exert chromatin remodelling effects themselves ?(Bannister & Kouzarides, 2011)?, and there is
evidence that the AR upregulates a number of its coregulators gene-specifically through varied
mechanisms, including AIB1, CBP, MAK, BRCA1, ?-catenin, ATAD2, and MID1 ?(Perner et al., 2015;
Alfonso Urbanucci et al., 2008, 2017)?. Several coregulators of the AR including p300, CBP and TIF2
have been shown to increase as a result of androgen deprivation ?(Agoulnik et al., 2006; Comuzzi et al.,
2004; Heemers et al., 2007)?. Even a modest overexpression of AR can alter expression and amounts of
AR coregulators ?(Chen et al., 2003)?, many of which are histone acetylating ?(Alfonso Urbanucci et al.,
2011)?. Key bromodomain proteins, which locus-specifically affect chromatin opening, are androgen
regulated and upregulated in AR overexpressing cells. These proteins participate in an AR deregulation-
driven feedback loop that increases AR chromatin accessibility ?(Alfonso Urbanucci et al., 2017)?. The
Jumonji C KDM4 histone lysine demethylases are overexpressed in CRPC, and KDM4B expression has
been significantly correlated with AR. KDM4B influences chromatin and may induce relaxation in
conditions of androgen deprivation that are relevant to progression to CRPC ?(Duan et al., 2019)?.

Gritsina et al. reviewed current knowledge regarding the function of AR signaling in driving target gene

                                 88 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

repression and silencing by regulation of the epigenetic machinery. Ligand-bound AR binds to the
enhancers and/or promoter elements of target genes and mediates assembly and recruitment of the
repressive complexes, including histone deacetylases, lysine-specific demethylase 1, and enhancer of
zeste homolog 2. AR directly and indirectly induces cascades involving the stabilisation of protein-
protein interactions and recruitment of complexes responsible for the removal of acyl groups,
demethylation, inhibition of transcriptional activators, and trimethylation, resulting in chromatin
modifications that render gene regulatory elements inaccessible or silenced ?(Yu et al., 2019)?.

Taken together, research has identified a clear role for AR expression in genome-wide epigenetic status,
along with the ability of the AR to recruit and drive the basic elements of the epigenetic machinery.
Additionally, it is apparent that a refractory response to antiandrogenic treatment can occur irrespective of
agent. With consideration to these findings, a potential feed-forward mechanism of AR overexpression,
potentiated by androgens, may have significant mechanistic implications for the onset and progressive
worsening of PFS with the "crash" after cessation of the medication, during which time the multi-
systemic symptoms and physiological effects of the condition become apparent or intensify with
significant interindividual variability in severity. This occurrence is most usually in a time frame of days
or weeks, a timeframe correlating to the return and increase of endogenous DHT levels as the newly
functional 5-alpha reductase enzyme is replenished. DHT has been demonstrated to alter the regulation of
a number of AR coactivators gene-specifically depending on the level of the receptor, suggesting
plausible involvement of coactivator regulation in a feedback loop potentiating increased AR signaling 
?(Alfonso Urbanucci et al., 2008)?.

fig. A proposed basic mechanism in pathologically affected cells
underlying the development of PFS. 

As the transition to CRPC results from androgen deprivation or androgen-axis targeted treatment, an
induction of AR deregulation could have relevance to the increased incidence of higher Gleason score
prostate cancers in 5ari patients ?(Sarkar et al., 2019; Theoret et al., 2011; Traish et al., 2014; Van
Rompay et al., 2018)?. It is of significance that, following three years of use and then cessation,
finasteride has been demonstrated to accelerate the progression of male pattern hair loss significantly.
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Using technologies unavailable at the time of finasteride's clinical approval, Van Neste recently reported
the first evidence of what they describe as a "drug dependency" of terminal scalp hair follicles in AGA
patients and a "post-finasteride rebound phenomenon" in patients who had stopped finasteride after 3
years of successful maintenance. During 3 years of finasteride use, 99%?100% terminal hair counts were
recorded suggesting effective maintenance. However, while terminal hair was maintained on drug, within
30 months "off-drug" androgenic alopecia had significantly worsened, only 5.8% of terminal hair could
be measured, with 94% having miniaturised and become unproductive. This is far in excess of the
expected regression rates that were previously established in these patients and robustly predicted at 6%
per year ?(Van Neste, 2019)?. It was previously reported that vertex dermal papilla cells in balding
samples were 1.9 fold higher in AR expression than those from the occipital scalp ?(Kwon et al., 2004)?,
and frontal follicles are 40% higher in AR expression in males compared with women ?(Sawaya & Price,
1997)?. Increased DNA methylation of the AR promoter in occipital follicles from men with AGA is
suggestive of toxicity mediated by receptor levels ?(Cobb et al., 2011)?. In agreement, AGA models
support an AR-mediated pathological process. Transgenic mice overexpressing human AR in the skin
exhibit impaired hair regeneration when exposed to DHT, while hydroxyflutamide can abolish this effect 
?(Crabtree et al., 2010)?. An adaptive increase in AR expression following androgen deprivation is
therefore a plausible a mechanistic explanation for an increase in hormone sensitivity causative of the
dramatic finasteride-induced progression of male pattern hair loss observed by Van Neste. Similarly,
epigenetic amplification in PFS could reflect the common reports of a significant acceleration in MPB
following development of the condition.

Therapeutic responses to androgens and antiandrogens in PFS

There is no known therapeutic approach for PFS ?(Than et al., 2018)? and no consistently safe or
effective therapy has emerged from two decades of patient self-experimentation. Owing to the common
PFS symptom profile ostensibly pointing towards decreased androgenic activity and low or hypogonadal
levels of testosterone in some cases of PFS, many patients have undergone treatment with exogenous
androgens. While this can be of benefit in some patients, it is very rare that this is complete or
consistently effective even if a temporary improvement is observed in some symptoms. Remarkably,
symptoms can be exacerbated by administration of androgens. This is well reported even in patients in
whom PFS has caused a clinical hypogonadism. Patients receiving testosterone replacement therapy prior
to PFS have reported a dramatic intolerance to exogenous androgens following the onset of the condition.
Testosterone is ordinarily associated with a decrease in depression an improved verbal memory 
?(Cherrier et al., 2014)? as well as anxiolytic effect in men, women and animals ?(McHenry et al.,
2014)?. The reverse has been well reported in PFS patients, even when hypogonadal. Beyond cognitive
symptoms, sexual dysfunction and physical symptoms such as muscle wastage can be exacerbated. This
is highly remarkable and paradoxical. A patient who since committed suicide reported further rapid penile
shrinking upon local application of topical DHT gel at a dosage of 5g per day with therapeutic intent.
This is striking and paradoxical with consideration as to the known effect of DHT in increasing penile
size ?(Arteaga-Silva et al., 2008; Becker et al., 2016; Choi et al., 1993)?. Patients will often report feeling
no response at all to high doses of testosterone. Interindividually variable "saturation" points with regard
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to androgen response ?(Morgentaler & Traish, 2009; Zitzmann, 2009)? have been hypothesised, and this
may be of relevance to the therapeutic failure of testosterone in PFS. A threshold at which androgen-
mediated toxicity reaches saturation has been observed with regard to the degree of symptoms seen in
SBMA models ?(Chevalier-Larsen & Merry, 2011)?, in the toxic effect of DHT in SBMA motor neurons 
?(Sheila et al., 2019)?, and in prostate cancer, in which testosterone therapy does not accelerate the
disease progression despite androgen dependence ?(Morgentaler & Traish, 2009)?. In PFS, this reaction
to exogenous ligand could plausibly be reflective of the degree of AR overexpression per site and per
patient, and offers an explanation as to why more favourable partial responses to androgens are
sometimes seen, while other patients can often rapidly worsen with raising androgen levels. Of note, it
has been reported that an SBMA patient exhibited a notably similar reversible deterioration with
androgen administration ?(Kinirons & Rouleau, 2008)?. Importantly, this would be in keeping with the
observed responses of female transgenic mice overexpressing WT AR in skeletal muscle to exogenous
testosterone equivalent to circulating male levels, which caused striking differences in deleterious
physiological effects depending on the degree of AR overexpression ?(Monks et al., 2007)?.

Across the history of the propeciahelp forum, the most consequentially profound responses described
entail significant modulation of symptoms by further exposure to substances that lower androgens
through mechanisms including 5 alpha reductase inhibition, or substances that reduce concentrations of or
inhibit AR. While rapid and severe worsening can occur, patients have equally often reported the
dramatic return of function in the domains affected by PFS, usually temporarily. These are nearly always
taken in the absence of the knowledge they are taking pharmaceuticals or natural extracts with
antiandrogenic properties and are frequently sought out based upon their purported benefits in marketing
and health editorials concerning relief of symptoms or through online reports from other patients. These
have included zinc, quercetin, resveratrol, milk thistle, licorice root, turmeric/curcumin, sulforaphane,
DIM, sodium butyrate, saw palmetto, tribulus terrestris, polyphenol rich products such as cacao nibs or
pomegranate, and soy and soy isoflavones including genistein, all of which are notably antiandrogenic
through various mechanisms ?(Agarwal et al., 2006; Boam, 2015; Cicero et al., 2019; De Amicis et al.,
2019; Hiipakka et al., 2002; Jang et al., 2019; Kampa et al., 2017; Le et al., 2003; Sabbadin et al., 2019;
Samykutty et al., 2013; Sandeep et al., 2015; Shiota et al., 2011; Xing, 2001)?. A remarkable overlap can
be noted with nutraceuticals that are of increasing interest in the treatment of AR-mediated conditions and
with substances or extracts causing patients to develop and present with PFS, as we have noted. Patients
have independently described significant and remarkable multi-domain relief following use of AR
antagonists including bicalutamide ?(Rice et al., 2019)?, and drugs with an antiandrogenic effects such as
ibuprofen, paracetamol, dexamethasone, omeprazole, leuprolide acetate and mifepristone ?(Hoda et al.,
2016; Inder et al., 2009; Kortenkamp, 2020; Kristensen et al., 2010; Song et al., 2004; Sørensen et al.,
2016)?, and even finasteride itself. Recently, truvada, an antiretroviral medication combining tenofovir
disoproxil and emtricitabine, has been reported to improve some PFS patients significantly in multiple
symptom domains. Marketed as PrEP, truvada is a reverse transcriptase inhibitor. RTI drugs have been
considered for potential therapeutic efficacy in hormonally refractive prostate cancer due to in vitro
results suggesting the capability of Nevirapine to induce extensive reprogramming of gene expression,
resensitizing cells to stimulation by extracellular ligand and consequentially re-establishing the efficacy
of antiandrogen treatment with bicalutamide ?(Landriscina et al., 2009)??.
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These common reports are highly remarkable and of relevance to the potential of a pathologic link
between PolyQ toxicity and deleterious consequences of site-specific overexpression of the wild type
androgen receptor. This would appear to be in alignment with functional rescue in SBMA models
targeting the androgen pathway ?(Cortes & La Spada, 2018; Katsuno et al., 2003; Minamiyama, 2004;
Nedelsky et al., 2010; Rinaldi et al., 2015)?, and the molecular level responses to androgens and
antiandrogens in AR overexpressing CRPC as discussed.

It is of the utmost importance to establish that antiandrogenic therapeutic strategies are dangerous for PFS
patients. Patients can persistently exacerbate or develop further symptoms in multiple domains of the
condition upon rechallenge or subsequent exposure to substances with antiandrogenic effect. This often
occurs after a dramatic improvement of existing multisystemic symptoms. In 2018, a PFS patient who
had taken supplementary resveratrol described a profound reversal of symptoms including insomnia,
erectile dysfunction, libido loss and fatigue shortly before taking his own life. We note a key vulnerability
of this cohort to what we believe to be an aberrant epigenetic response following exposure to
antiandrogenic substances. This vulnerability appears significantly exacerbated following initial
development of PFS, and even phenol or isoflavone-rich foods have resulted in clear reports of persistent
worsening or the triggering of further symptoms. PFS patients most at risk of this are, in our experience,
those who present with severe phenotypes after short use of finasteride or a causative antiandrogenic
substance. Therefore, until more is known regarding the molecular mechanisms underlying the
development of PFS, we strongly urge physicians dealing with PFS patients to be aware of this unique
and peculiar vulnerability to therapeutic substances or medicines with antiandrogenic modality. This is of
relevance to both prescribed therapies such as SRI antidepressants and to self-driven “natural” therapeutic
attempts that can involve high dose phenolic compounds or vitamins marketed as health supplements.
Owing to the sometimes profound endocrine sensitivity induced by PFS, safely managing the condition
can be a significant burden for patients.
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The role of the AR in areas relevant to the sexual dysfunction in
PFS
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Libido, erectile function, and penile structural maintenance

Male libido and sexual desire is primarily androgen-mediated and strictly testosterone dependent.
Considerable evidence supports libido loss as the clearest symptom of hypogonadism ?(Santi et al.,
2018)?. Evidence regarding the role of other hormones is less clear ?(Corona et al., 2016)?. Male-typical
behaviour requires AR signaling in adults, and AR inactivation in male mice causes a complete loss of
male sexual behaviour alongside a significant reduction in aggression ?(Sato et al., 2004)?.

Phosphorylated endothelial nitric oxide synthase (eNOS) has a key facilitative role in physiological penile
erection following initiation by neuronal nitric oxide synthase (nNOS) ?(Burnett, 2004)?. In human aortic
endothelium cells, T rapidly induces eNOS activation and production of nitric oxide through AR-
dependent induction of PI3-kinase/Akt signaling ?(Yu et al., 2010)?. Additionally, AR inactivation in
mice demonstrates a dramatic reduction in nNOS expression in the hypothalamus, suggesting AR
regulation of this neurotransmitter and its sexually relevant functions ?(Sato et al., 2004)?. A particularly
common and important symptom of PFS is the loss of nocturnal and morning erections. This is a central
mechanism of unconscious sexual arousability ?(Santi et al., 2018)?. Inactivation of the noradrenergic
cells in the locus coeruleus in the brain stem, a site expressive of the AR, is a testosterone-dependant
process ?(Bancroft, 2005)? that results in nocturnal penile tumescence.

Androgens are crucial to maintain male reproductive physiology and erectile function and are critical to
the integrity and maintenance of the tunica albuginea, cavernous endothelium, cavernosal smooth muscle,
and nerve structure and function ?(A. Traish & Kim, 2005; A. M. Traish, 2008; Zhang et al., 2013)?.
Tissue integrity and structure is vital to venoocclusive function, and structural alteration will result in
dysfunction that is both difficult to diagnose and challenging to treat ?(A. M. Traish, 2008)?. Castration
of adult male rats significantly decreases penile length, girth, smooth muscle content and endothelial
nitric oxide synthase activity, and this is reversible with testosterone administration ?(Halmenschlager et
al., 2017; Hofer et al., 2015; Huh et al., 2018; A. M. Traish, 2008)?. Immunohistochemical study of
stromal and endothelial human corpus cavernosum cells biopsied from potent males aged between 19 and
63 revealed age-independent high expression of the AR (74.9%) and low expression of ERa (11%).
Cultured endothelial cells exposed to T or DHT showed dose-dependent and significant increases in
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cellular metabolic activity than control groups with or without growth medium, while similar
concentrations of estradiol or progesterone had no respective effect compared with controls ?(Schultheiss
et al., 2003)?. This comparably reflects the testosterone-stimulated increase in proliferation reported in
fetal smooth muscle cells ?(Crescioli et al., 2003)?, suggesting that peripheral androgen receptor function
is important for maintenance of physiology and function of the endothelium in the adult human male
penis. The significant expression of AR in penile tissue suggests its vulnerability to a proposed loss of
function and potential toxic gain of function conferred by site-specific AR overexpression. This is of
particular relevance to the progressive and often rapid penile atrophy after cessation of the drug
experienced by some PFS patients that can occur after only one dose ?(Garreton et al., 2016)?. It is
particularly relevant that PFS patients reporting this can have normal serum androgen levels ?(Irwig,
2014)?, or frequently relatively high - or intraindividually increased - levels of T.

In addition to venous leakage, clinical findings of calcification and atherosclerosis upon penile ultrasound
are anecdotally reported findings following urological evaluation of PFS patients with atrophic changes to
the penis. AR signaling is increasingly appreciated as involved in calcification and atherosclerotic lesions,
in line with the well-appreciated heightened risk of cardiovascular disease in males, as recently reviewed
by Takov et al ?(Takov et al., 2018)?. Vascular smooth muscle cells (VSMCs) provide structural integrity
of blood vessels and control diameter via regulation of contraction and vasodilation ?(Metz et al., 2011)?.
Zhu et al. reported significant expression of the AR in VSMCs and the presence of AR in calcified aortic
and femoral artery tissue. In vitro investigation revealed striking induction of pro-calcificatory effects by
both testosterone and DHT, and the lack of aromatase expression in these cells indicated direct mediation
by AR signaling ?(Zhu et al., 2016)?. Arterial calcification and atherosclerosis has been associated with
long term anabolic steroid abuse, hyperandrogenemia in women with polycystic ovary syndrome and
postmenopausal women administered testosterone ?(Christian et al., 2003; Hak et al., 2007; Santora et al.,
2006)?. However, in addition to pro-calcificatory effects, investigations have revealed that androgen
induction of AR-mediated processes are atheroprotective ?(Son et al., 2010; Yu et al., 2010)?, further
suggesting appropriate AR-mediated signaling is necessary for vascular health.

Testosterone treatment of rats during urethral wound healing increases myofibroblast proliferation and
collagen deposition, and Hofer et al. speculate this may contribute to spongiofibrosis and stricture
development ?(Hofer et al., 2015)?. Finasteride has recently been suggested as a potential therapy in
myocardial infarction. Evidence of increased DHT and androgen-responsive gene expression in mouse
models of myocardial infarction was reported, and treatment with finasteride markedly improved cardiac
function and reduced fibroblast collagen secretion ?(Froese et al., 2018)?. Interestingly, prominent
collagen deposition is reported in the corpus cavernosum of rats treated with either finasteride or
dutasteride ?(Sahin Kilic et al., 2018)?, reflecting androgen deprivation and hypogonadism ?(El-Sakka,
2011; A. Traish & Kim, 2005)?, possibly indicative of a similar histopathological effect of both reduced
or increased androgen signaling.

Hypospadias, a congenital penile deformation associated with prenatal endocrine disruption ?(Wolf et al.,
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1999)? and decreased androgen signaling ?(Aschim et al., 2004)?, is associated with altered expression of
the AR ?(Vottero et al., 2011)?. Loss of AR expression is not correlated to severity ?(Celayir, 2018)?.
Interestingly, Qiao et al. reported that AR was significantly upregulated in the preputial skin of boys with
severe hypospadias compared with boys without hypospadias or boys with mild hypospadias, the latter
demonstrating a more moderate elevation in AR expression ?(Qiao et al., 2012)?.

Sperm count, motility, and semen consistency

AR dysregulation is a plausible causative factor for well-reported changes to sperm count, motility,
semen consistency and ejaculate volume in PFS. AR action in the male reproductive system is
functionally critical to sperm differentiation, maturation and survival. Targeted AR knockout in mice
causes azoospermia and infertility ?(Krutskikh et al., 2011)?. The AR has been recently shown to be
critical across the spermatogenesis and maturation processes. Androgen blockade inhibits differentiation
to spermatocytes. In vitro cell culture and in vivo confirmations revealed that promyelocytic leukemia
zinc-finger, an important gene in differentiation of spermatogonial stem cells. AR in Sertoli cells
indirectly regulates ?1 integrin via GATA2 and WT-1, and ?1 integrin further binds to E-cadherin to
regulate the fate of spermatogonial stem cells. DHT treatment of AR-overexpressing Sertoli cells
demonstrated AR indirectly down-regulates WT-1, a key gene in spermatogenesis, via GATA2 ?(J. Wang
et al., 2019)?. WT-1 is critical to spermatogenesis and deficiency is associated with male infertility ?(X.
N. Wang et al., 2013)?. The human epididymis is a complex tubular structure in which spermatozoa
functionally develop and reach maturity, serving as conduit to the vas deferens from the testis ?(Cornwall,
2008)?. AR is prominently expressed throughout the epididymis ?(SAR et al., 1990; Zhou et al., 2002)?,
and the importance of the AR in this tissue is well established ?(Robaire & Hamzeh, 2011)?. The critical
influence of the AR in human epidydimal cells has been confirmed by next generation deep sequencing
protocols ?(Browne et al., 2019)?. The AR has been identified to regulate a functional transcriptional
network of about 200 genes in the human caput epididymis epithelium and is therefore critically
implicated in sperm maturation and fertility maintenance in men ?(Yang et al., 2018)?. The vas deferens
fluid microenvironment is crucial to sperm transport and survival in the organ. In rats, vas deferens lumen
size, fluid volume and osmolality have been demonstrated to be under the regulation of the AR, as was
the expression of aquaporin isoforms AQP-1, AQP-2 and AQP-9. Testosterone was shown to increase
water secretion and osmolality in this organ through the AR and was interrupted by Finasteride or
Flutamide ?(Ramli et al., 2018)?.

Post-Orgasm illness and increased refractory period

Both a significantly increased refractory period and a post-orgasm modulation of symptoms is widely
reported in PFS. Male accessory sex organs are responsive to prolactin. Post-orgasm increases in
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prolactin are implicated in sex organ maintenance and functionality, whereas constant levels would prove
deleterious ?(Hernandez et al., 2006)?. Prolactin administration has been observed to induce a dose-
related increase of AR expression levels beyond levels explainable by organ weight increases in the
testes, prostate and epididymis in male rats ?(BARAÑAO et al., 1982)?.

In male rats, AR mRNA levels in the ventral prostate were determined after consecutive ejaculations by
Hernandez et al. AR, with a concurrent steady increase in AR mRNA, was significantly increased after
one ejaculation (100% increase; p < 0.05). Levels were further highly increased after two and three
ejaculations (200% and 300% increases respectively) to a total of 800%, returning to precopulatory levels
rapidly after the fourth ejaculation. Interestingly, a rapid and significant copulation-induced induced
increase in androgen receptor protein precedes higher expression of mRNA or serum elevation of
testosterone, suggesting rapid regulatory processes. Additionally, testosterone reaching its maximal
increase did not arrest the continual increase of AR mRNA, suggesting the existence of a balance of both
gene transcription and stabilization in regards to AR-mRNA levels ?(Hernandez et al., 2007)?.

The paracrine influence of oxytocin ?(H. Nicholson, 1996)?, which systemically increases at orgasm 
?(Ivell et al., 1997; OGAWA et al., 1980; Thackare et al., 2006)?, may be influential in the commonly
reported modulation of PFS symptoms following orgasm, which can include severe multi-symptom
worsening usually lasting a number of days. Administration of oxytocin to rats has been shown to
increase testicular and epididymal weight, with a significant increase in 5alpha reductase activity in these
organs (P < 0.005 and P < 0.01 respectively). In vitro homogenates incubated with oxytocin additionally
showed significant increases in 5alpha reductase activity at low concentrations (10 pg/0.3-mg protein) 
?(H. D. Nicholson & Jenkin, 1994)?. Oxytocin at physiological levels positively regulates the activity of
type I and II 5alpha reductases in human prostate epithelial cells ?(S.J. Assinder, 2007)? and in LNCAP
cell lines ?(Stephen J. Assinder et al., 2015)?. These results occurred at the level of post-translational
protein activity and do not appear to regulate gene expression. Oxytocin is considered to be a potent
growth inducer in prostate cancer ?(Xu et al., 2017)?. We hypothesise the increase in 5alpha-reductase
activity and increased androgen receptor expression may explain a significant and widely anecdotally
reported impact of orgasm on PFS symptoms.
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The role of the AR in areas relevant to the physiological
symptoms of PFS
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Muscle atrophy and muscular dysfunction

Evidence regarding the ligand- and dose-dependent atrophic consequences of AR overexpression in
muscle have been discussed in a previous section. Muscle AR is a major determinant of muscle mass and
function. Owing to this, selective androgen receptor modulators are in development with a focus on
therapeutic application to diseases including muscle wasting and cachexia ?(Narayanan et al., 2018;
Srinath & Dobs, 2014)?. In mice with AR knockout in satellite cells, the precursor cells of skeletal
muscle, limb maximal grip strength is decreased by 7% despite similar mass, with altered fiber-type
distribution observed in soleus muscles. The weight of the perineal LABC muscle is markedly reduced,
weighing 52 percent less than control animals ?(Dubois et al., 2014)?. Significant levator ani weight
reduction occurs in inducible ARKO mice in adulthood independent of earlier AR expression ?(Wu et al.,
2019)?. It is well appreciated that both the innervating lower motor neurons and the skeletal muscle of the
LABC are exquisitely sensitive to androgens ?(Z. Yu, 2006)?, highly expressive of AR ?(D. Ashley
Monks & Holmes, 2017; Narayanan et al., 2018)? and androgen dependent for survival and function ?(N.
Forger et al., 1993; N. G. Forger et al., 1992; Johansen et al., 2007; C. Jordan et al., 1997; C. L. Jordan et
al., 1991; Douglas Ashley Monks et al., 2004; Schrøder, 1980; J. Xu et al., 2001)?. In female
ovariectomized mice with consequently diminished pelvic muscles, two SARMs restored pelvic floor
muscles to sham operated control weights, with a nonsignificant trend towards an overall increase in lean
body mass ?(Ponnusamy et al., 2017)?. As a key site for histological analysis of AR-mediated toxicity 
?(Nath et al., 2018)?, the pelvic floor muscle area is a promising site for biopsy and gene expression assay
in PFS patients, as well as for less invasive study including EMG evaluation.

Defects in excitation contraction coupling and intracellular calcium homeostasis of skeletal muscle result
in a wide range of myopathies including weakness, myalgia, cramping, muscle wasting, joint stiffness and
exercise intolerance ?(Dowling et al., 2014)?. The AR is an important regulator of genes involved in
muscle contraction, function, structure and calcium dynamics ?(Chivet et al., 2019)?. Using a
computational biology approach, Chivet et al. identified androgen response elements in the enhancers,
promoters, and 5’-untranslated regions of excitation-contraction coupling-related genes found to be
dysregulated in their transcriptome analysis of AR100Q, AR113Q mice and SBMA patients. Restoration
was achievable partly with castration and fully with suppression of polyQ AR using antisense
oligonucleotides, suggesting a reversibility of the disruption. Importantly, these genes were found to be
similarly dysregulated in castrated wild-type mice, establishing the key genes involved in muscle
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contraction as being under the regulation of androgen signaling ?(Chivet et al., 2019)?.

Myostatin is a growth factor that strongly inhibits muscle growth ?(McPherron et al., 1997)?, and is under
the regulation of AR signaling. Dubois et al. reported a >6-fold decrease in myostatin expression in
levator ani muscle of satellite ARKO mice, as well as significant downregulation in the gastrocnemius.
Additionally, a reduction of myostatin mRNA levels in orchiectomised mice could be fully reversed with
testosterone or DHT administration, demonstrating that myostatin is androgen regulated ?(Dubois et al.,
2014)?. However, Mendler et al. reported a strong suppression of myostatin mRNA levels by androgens
in the skeletal muscle of young male rats. Considering the presence of ARE on the myostatin gene and
the induction of androgen receptor coregulators by myostatin, they speculate that a negative feedback-
loop exists between myostatin and androgen pathways ?(Mendler et al., 2007)?.

Skeletal and dental problems

Bone-related complaints are frequent, and diagnosis of osteopenia and osteoporosis are reported by PFS
patients. All aspects of body composition are determined by the actions of sex steroids including in the
skeleton. Body composition is generally more robust in men, and the risk of osteoporosis is
approximately half that of women ?(Vanderschueren et al., 2014)?. Hypogonadal men have lowered bone
mineral density that is normalised by exogenous testosterone treatment ?(Behre et al., 1997)?. In addition
to ER, appropriate AR signaling is independently required for adult bone health and maintenance ?(J.-F.
Chen et al., 2019)?. AR is ubiquitously expressed in human bone marrow in both sexes ?(Mantalaris et
al., 2001)?. Detailed tissue specific and global studies of ARKO in bone have revealed a critical
regulatory role for androgens in bone health and maintenance on a compartmental basis 
?(Vanderschueren et al., 2014)?. Men with complete or partial androgen insensitivity syndrome have a
reduced final height that is intermediate between ordinary males and females, as well as reduced lumbar
spine density that cannot be compensated by estrogen replacement ?(Danilovic et al., 2006)?. The
dramatic reduction in lumbar bone density in androgen insensitivity syndrome patients is not seen in men
with 5alpha redutase type II insufficiency syndrome ?(Sobel et al., 2006)?. In Asian men with prostate
cancer, 12 months of ADT with either combined GnRH agonist and bicalutamide therapy or GnRH
monotherapy induces the same significant loss of bone mineral density ?(Joung et al., 2017)?.
Collectively, this illustrates a direct role of the AR in human bone maintenance. To account for the
potential of the confounding influence on developmental influences in lifelong ARKO models, Wu et al.
developed an inducible ARKO model, demonstrating appropriate AR expression in adulthood is crucial
for bone maintenance in adult male mice. Both pre and post-pubertal AR inactivation resulted in
significant decreases in the mid-diaphyseal cortical area and cortical thickness in the tibia, as well as
trabecular bone volume fraction in the metaphyseal region ?(Wu et al., 2019)?. The reduced cortical
thickness was seen to be a "phenocopy" of previously reported models of lifelong AR inactivation 
?(Almeida et al., 2017)?.
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In a transgenic mouse model, Wiren et al. explored the consequences of targeted AR overexpression in
differentiated osteoblasts, demonstrating that excess AR signaling results in a significantly negative
consequences on bone matrix quality, biomechanical competence, fragility and strength, while reducing
turnover and inhibiting osteoblastic formation ?(Wiren et al., 2008)?. In line with these findings, Aro et
al. locally delivered a SARM via an implanted sustained-release matrix in a rat bone marrow ablation
model. Contrary to the stated hypothesis of an anabolic effect on intramedullary osteogenesis, only the
lowest dose had a negligible anabolic effect, while all higher doses resulted in a dose-dependent decrease
in new bone formation around the implant and the bone/implant contact. This was noted to be reflective
of overexpression models ?(Aro et al., 2015)?. These findings support the suggestion of Vanderschueren
et al that neither too high nor too low AR activity is favourable for bone. Steffens et al. have
demonstrated in rats that, as with low levels of testosterone following orchidectomy, supraphysiological
doses also increase ligature-induced periodontal bone loss ?(Joao P. Steffens et al., 2012; Joao Paulo
Steffens et al., 2015)?, plausibly reflecting the curvilinear dose relationship of AR signaling ?(Gibson et
al., 2018)?.

Tooth loss and gum problems are frequent in PFS patients, with many reports of rapid degeneration of
teeth, gum recession and the condition causing the need to undergo gingival grafts. Similarly,
significantly affected male patients have reported progressive alterations to the jaw structure after
cessation. This is notably reported by two brothers who developed PFS after only two weeks of use. It is
therefore again highly significant that several lines of evidence suggest periodontal and gingival tissues,
tissues responsible for teeth structure and gum health, are dependent on androgens and specifically AR
signaling. AR inhibition has been demonstrated to significantly increase peridontal bone loss and impairs
bone repair in female rats and is regulatory of inflammatory markers in gingival tissue ?(João Paulo
Steffens et al., 2018, 2019)?. Minocyline can stimulate 5alpha reductase in gingival tissue, and
combinatory administration with finasteride has suggested that some of the anabolic response to
minocycline in these tissues are attributed to the AR pathyway ?(Soory & Virdi, 1998)?. Parkar et al.
analysed numerous human peridontal ligament and gingival tissue samples as well as cultured cells for
expression of AR. In contrast to ER which was not detected, AR was readily detected in a high proportion
of tissue and all fibroblasts, suggesting a high and direct sensitivity to androgens in these tissues with
implications for inflammation, connective tissue and bone repair processes ?(Parkar et al., 1996)?. AR is
also highly expressed in human tooth pulp, with a greater expression in males than females, and is subject
to hormonal manipulation in vitro. T was observed to significantly reduce AR content in tooth pulp, while
E2 or androstenedione increased AR mRNA. This suggests, as with bone, this tissue is highly androgen
responsive ?(Dale et al., 2002)?. Wang et al. systematically examined the mandibles of castrated rhesus
macaques in prime and old age against those of control animals to determine the impact of low androgens
on bone and teeth. A prevalence of periodontitis, significant alveolar bone recession and severe
temporomandibular joint osteoarthritis was observed in the old castrates. Faces were indicated to be
generally narrower by reduced distance between rami. Cortical bone of the mandibular body and rami
was thinner, and molar teeth were slender in castrates. These findings collectively suggest the importance
of androgens to development and maintenance of facial structure, skeletal and dental health in macaques 
?(Q. Wang et al., 2015)?. In addition, androgens exert a significant nociceptive behavioural response and
are protective against temporomandibular joint pain in castrated male and female rats, but not sham-
operated males. This was demonstrated to be mediated by the AR and is independent of aromatisation to
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estrogen or the organisational effects of androgens ?(Fanton et al., 2017)?.

Metabolic regulation

Androgens and the AR are increasingly appreciated as important regulators of metabolic function through
actions across the body, and increasing evidence suggests an important influence on metabolic regulation
through actions in neurons in hypothalamic and extra-hypothalamic sites in addition to peripheral tissues 
?(Morford et al., 2018)?. As in broader evidence we have discussed, there appears to be a parabolic nature
to androgen signaling in metabolic function, with high and low levels being detrimental in both sexes,
although the parabola is shifted far to the right in males ?(Morford et al., 2018)?. Low androgens and
androgen deprivation therapy for prostate cancer increase the risk of type 2 diabetes and obesity in men,
and studies in humans and animal models have associated low androgens with hyperglycemia, decreased
pancreatic ?-cell function, impaired fasting glucose, glucose intolerance, altered lipid profiles and
metabolic syndrome ?(Morford et al., 2018; G. Navarro et al., 2016; I.-C. Yu et al., 2014)?. Central AR
knockout in males causes late-onset insulin resistance, glucose intolerance, lipid accumulation in the liver
and visceral obesity ?(I.-C. Yu et al., 2012)?. ARKO also induces leptin resistance ?(Fan et al., 2008)?.
AR CAG repeat length is positively correlated with higher body fat content, increased leptin and
hyperinsulinemia in men ?(Zitzmann et al., 2003)? owing to weaker AR signaling. Interestingly, the risk
of type 2 diabetes was recently shown to be 30% greater over 11 years in men receiving either finasteride
or dutasteride for BPH, without a difference between the drugs ?(Wei et al., 2019)?. Excessive androgen
signaling is also detrimental to optimum metabolic function in males. Male powerlifters using anabolic
steroids have diminished glucose tolerance secondary to insulin resistance when compared with non-
steroid using athletes and sedentary weight men ?(COHEN & HICKMAN, 1987)?. In castrated rats
administered high doses of testosterone, insulin resistance was observed, as with the castrated group.
Castrated rats administered testosterone at a dosage that restored physiological levels abolished the
perturbation of insulin sensitivity induced by castration, suggesting an appropriate "window" of androgen
signaling is required for metabolic homeostasis in males ?(HOLMÄNG & BJÖRNTORP, 1992)?.

Hyperandrogenaemia in women results in metabolic effects strikingly coincident with hypogonadism in
men, including predisposition to type 2 diabetes ?(Escobar-Morreale et al., 2014)?. In female mice fed a
representative "Western" diet, chronic DHT administration predisposed subjects to type 2 diabetes due to
activation of AR in the hypothalamus, which promoted hepatic insulin resistance. In these mice, increased
AR signaling in pancreatic ? cells increased mitochondrial oxygen consumption and caused insulin
hypersecretion, oxidative injury, and predisposed to secondary ? cell failure ?(G. Navarro et al., 2018)?.
RNA-seq has identified a fold change >2 in the expression of 214 genes in AR-deficient islets, and that a
third of these are proteins associated with cellular stress and inflammation, indicating a response to injury
and emphasising the importance of appropriate AR signaling to ? cell health ?(W. Xu et al., 2017)?.
Another study in adult female rats showed hyperinsulinemia due to elevated DHT occurs without
alteration in the number or size of pancreatic islets or change in ?-cell area. Even though DHT treated
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females had higher insulin levels than controls, they exhibited glucose intolerance with elevated plasma
glucose. Ins1 was shown to have an ARE-like sequence that bound to AR upon DHT treatment,
suggesting functional regulation of insulin by the AR and androgen. Additionally, skeletal muscle Ir?, the
major utiliser of glucose, was downregulated in this model ?(Mishra et al., 2018)?. Independent of
obesity, female mice eating a normal diet administered low-dose DHT exhibit impaired whole-body
glucose metabolism consisting of glucose intolerance, hepatocyte AR-mediated insulin resistance,
impaired gluconeogenic capacity and hyperinsulinemia. This was in addition to observations pertaining to
reproductive dysfunction including acyclicity, decreased corpora lutea, and increased atretic follicles that
were beyond the scope of the study ?(Andrisse et al., 2016)?. Reflective of evidence in animal models,
50-90% of women with PCOS, a condition characterised by pathological hyperandrogenemia, display
insulin resistance and glucose intolerance ?(Morford et al., 2018; W. Xu et al., 2019)?. Testosterone
levels robustly correlate with the degree of insulin resistance and ?-cell dysfunction in PCOS ?(Sahin et
al., 2014; W. Xu et al., 2019)?. The Glucagon-Like Peptide-1 (GLP-1) receptor is widely expressed and
also an important contributor to insulin and glucose homeostasis and ?-cell proliferation ?(Bullock et al.,
1996)?. Zhu et al recently demonstrated that GLP-1R expression is under the regulation of androgen
signaling, and that this regulation was mediated by the DHT AR complex binding to an AR motif in the
Glp1r gene promoter region ?(Zhu et al., 2019)?.

Glucocorticoid steroids pleiotropically mediate a number of functions essential for life including stress-
related and circadian functions, immune regulation, metabolic and energy regulation including
gluconeogenesis, and control of glucose uptake ?(Kadmiel & Cidlowski, 2013)?. Spaanderman et al
recently demonstrated that androgen receptor signaling strongly influences glucocorticoid receptor
signaling in metabolic tissues. AR agonism was demonstrated to potentiate glucocorticoid signaling in
white and brown adipocytes in vitro and in vivo, while AR antagonism attenuated GR in white adipose
tissue and the liver. 11B-hydroxysteroid dehydrogenase type 1, critical to glucocorticoid homeostasis,
was shown to be AR regulated. They also demonstrated increased glucocorticoid signalling enhanced fat
mass and significantly reduced lean mass without significantly altering weight and induced
hyperlipidaemia which was attenuated with the antiandrogen enzalutamide ?(Spaanderman et al., 2019)?.

Androgens, and appropriate proteomic quantity and status of AR, are crucially important to metabolic
function and determinant of many aspects of metabolic health. Therefore, a dysregulated androgen
receptor is a plausible mechanistic factor in the metabolic disturbances observed in PFS. Additionally, as
recent findings implicate insulin receptor and glucagon-like peptide 1 expression in dopaminergic
function and mood disorders (Mansur et al., 2018, 2019), the increasing appreciation of the regulation of
androgen signaling upon metabolic systems may have functional relevance to the psychological
disturbances in PFS.

Digestive complaints, dysmotility, bile acid synthesis and microbiome
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Digestive complaints are frequent in PFS with dysmotility, diarrhoea, constipation, and pale stools well
reported. Well appreciated sex differences exist in digestive conditions such as IBS, suggesting an
influence of sex hormones ?(Y. S. Kim & Kim, 2018)?, and women are generally considered to be more
disposed to functional gastroenterological disorders ?(Houghton et al., 2016)?. Interestingly, testosterone
has been reported to be higher in male IBS patients than controls ?(B. J. Kim et al., 2008)?. González-
Montelongo et al. demonstrated that the digestive tract is a key target of functionally relevant androgen
action owing to the AR-mediated regulatory influence of intestinal smooth muscle transit ?(María C.
González-Montelongo et al., 2010)?. Calcium sensitization and potentiation of contractile activity in ileal
and colonic muscles is rapidly and powerfully induced by androgens at physiological concentrations
through a strictly androgen-receptor dependent mechanism ?(Maria C. González-Montelongo et al., 2006;
María C. González-Montelongo et al., 2010)? that induces non-genomic cellular signal cascades. These in
turn increase ornithine decarboxylase and intracellular polyamines ?(María C. González-Montelongo et
al., 2013)?, important modulators of intestinal peristalsis ?(Sánchez et al., 2017)?.

Dysregulation of bile acid metabolism can result in malabsorption and hyperbilirubinemia ?(Chiang,
2013)? which is a frequent serum abnormality reported by PFS patients. Aldo-keto reductase family 1
member D1 (AKR1D1), a ?4-3-oxosteroid 5?-reductase, is required to synthesise bile acid from
cholesterol ?(Chiang, 2013)?. Upregulation of Peroxisome Proliferator-activated Receptor ? (PPAR?) has
been demonstrated to markedly decrease AKR1D1 promotor transactivation and expression in vitro in
HepG2 cells and in vivo, disrupting bile acid homeostasis ?(Valanejad et al., 2018)?. PPAR? also induces
glucuronidation of bile acids, making this an important regulator of metabolism ?(Barbier et al., 2003)?.
PPAR? has been demonstrated to be under direct regulation by androgens ?(Collett et al., 2000; Zhang et
al., 2012)?, and this suggests androgen receptor dysregulation may have functional consequences on bile
acid synthesis and metabolism due to crosstalk between these pathways.

Androgen dysregulation has been well demonstrated to induce changes in the microbiome composition,
including mice models of hyperandrogenemia, castrated mice and PCa patients undergoing multiple
different antiandrogen therapies ?(Guo et al., 2016; Harada et al., 2016; Sfanos et al., 2018; Sherman et
al., 2018)?. The absence of species does not appear to affect the influence of androgens on composition 
?(Torres et al., 2019)?. Additionally, the microbiome composition of Finasteride treated rats is shown to
differ from control animals ?(Diviccaro et al., 2019)?. 

Immune system and wound healing

For many patients PFS entails an alteration of immune responses, including intraindividual changes in the
incidences of viral infection, fungal infections and the modulation of allergies. Various studies have
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highlighted essential androgen regulation of the immune system ?(Lai, Lai, et al., 2012)?. Data indicates
an extensive role for the AR in haematopoiesis ?(Mantalaris et al., 2001)?, and immune cell lines
including neutrophils, mast cells, macrophages, B cells, T and Treg cells express AR ?(W. Chen et al.,
2010; Ma et al., 2019; Mantalaris et al., 2001; Viselli et al., 1997; Walecki et al., 2015)?. Rodent studies
have indicated that androgen signaling directly influences differentiation and function of T and B cells,
central to the adaptive immune system, and possibly contributes to sex differences in autoimmune
disorders ?(Gubbels Bupp & Jorgensen, 2018)?. Androgens and the AR have an increasingly appreciated
role in thymopoiesis and T cell transcriptional function partly by modulation of thymic epithelial cells
and affect thymic size and output ?(M. A. Brown & Su, 2019)?. Kadel and Kovats, reviewing the
understanding of the regulation of sex hormones and viral immunity, suggest that receptor expression
may underlie numbers of and functional regulation of innate immune cells in response to hormones 
?(Kadel & Kovats, 2018)?. Further, sex differences in epigenetically imprinted regions of open or closed
chromatin in hematopoietic stem cells may exist, and the sex-divergent epigenome may be responsive to
the sex hormone environment ?(M. A. Brown & Su, 2019; Kadel & Kovats, 2018)?.

Neutrophils are significantly the most abundant granulocyte and form an vital part of the innate immune
system, responding rapidly through chemotaxis to clear bacterial and fungal infections ?(Desai &
Lionakis, 2018; Lai, Lai, et al., 2012)?. As well as phagocytic removal of cellular debris and pathogens,
neutrophils secrete and scavenge a number of cytokines and chemokines that recruit and activate
macrophages and monocytes in resolution of inflammation ?(Gordon & Taylor, 2005; Jones et al., 2016;
Pham, 2006; Rittirsch et al., 2008)?. In men and women neutrophils strongly express AR at all stages of
granulopoiesis from myeloblasts to mature neutrophils ?(Mantalaris et al., 2001)?. In humans,
neutropenia can occur with antiandrogen treatment ?(Eaton & Blackmore, 2001; McDonnell &
Livingston, 1994)? but neutrophil counts decrease more moderately following castration ?(Chuang et al.,
2009)?.

With both in vivo and in vitro studies, Chuang et al. demonstrated that the AR exerts a direct and
profound effect upon which neutrophil homeostasis is critically dependent. AR knockout mice are
significantly more susceptible to infection. A 90% reduction of neutrophils is observed in male AR
knockout and Tfm mice compared with wild type, while castration results in a less significant neutrophil
reduction in blood and bone marrow, reflecting human findings. Exogenous androgens restored
neutrophil levels in castrated WT mice, but not Tfm or AR knockout mice. Female mice have normal
neutrophil levels in the presence of ten-fold lower androgen levels than males, whereas female AR
knockout mice are neutropenic, suggesting a direct importance of the AR rather than androgens. It was
further demonstrated that loss of AR results in defects in terminal differentiation of neutrophils, and AR
restoration in AR knockout granulocyte-macrophage progenitor cells rescued the neutrophil maturation
process. AR was also shown to be significantly important to neutrophil production mechanistically by
regulation of granulocyte-colony stimulating factor (G-CSF) signaling. Loss of AR in granulocytes leads
to suppression of G-CSF resulting from an increase in protein inhibitor of activated STAT protein 3
(PIAS3) binding to STAT3, which is rescued by AR in a dose-dependent manner, apparently without
dependence on androgens. Thus, AR is required for G-CSF induction of ERK activation and consequent
proliferation of granulocytes ?(Chuang et al., 2009)?. Higher androgen levels have been demonstrated to

                                123 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

impair the bactericidal abilities of neutrophils and increase the expression of anti-inflammatory cytokines
IL10 and TGF?1 in a rat model of bacterial prostate inflammation, prolonging the inflammatory response
?(Scalerandi et al., 2018)?.

Slowed wound healing is very frequently reported in PFS. As with immune differences, sex differences
exist in the speed of cutaneous wound healing, with males healing slower than females ?(Taylor et al.,
2002)?. Higher androgen levels are observed to be inhibitory of cutaneous wound healing ?(Ashcroft &
Mills, 2002; Fimmel & Zouboulis, 2005)?, and DHT is more potently inhibitory of upon re-
epithelialization than testosterone ?(Gilliver et al., 2009)?. In line with findings in dermal wound healing,
androgens were demonstrated to prolong healing in castrated rats administered testosterone following
urethral surgery. Those administered testosterone had significantly increased neutrophils, higher
macrophage counts, significantly higher immunomodulators such as TNF?, TGF?-1, VEGF? and IL-10, a
more intense and longer inflammatory phase and an increase in myofibroblast proliferation and collagen
tissue deposition in the delayed proliferative phase ?(Hofer et al., 2015)?. Following prostate resection,
both castration ?(X.-J. Wang et al., 2017)? and finasteride ?(Ruizhe Zhao et al., 2017)? were seen to
speed wound healing and induce re-epithelialization, while DHT enhanced macrophages TNF-? secretion
through AR signaling. This extended the inflammatory phase, delaying and weakening the anti-
inflammatory stage.

Mechanistic studies have revealed that the AR, and not androgens, are critical to the suppression of
wound healing ?(Lai, Chang, et al., 2012)?. AR knockout males have markedly accelerated wound
healing that is not reversed with DHT administration ?(Lai et al., 2009)?, demonstrating increased
reepithelialisation, keratinocyte proliferation and matrix deposition. By contrast, AR knockout does not
affect the wound healing rate in female mice ?(Yiwei Wang et al., 2016)?. In a model of autoimmune
myocarditis, AR suppression with the AR degrader ASC-J9 promoted anti-inflammatory cytokines and
M2 macrophage polarization via STAT3/SOCS3 regulation, suggesting ASC-J9s potential as a protective
therapeutic in inflammatory cardiomyopathy ?(Ma et al., 2019)?. Local AR antagonists and degraders
including ASC-J9 are reported to speed wound healing ?(Lai et al., 2009; Toraldo et al., 2012; Yiwei
Wang et al., 2016)?. While AR has an upregulatory effect on TNF-? and CCR2 expression, suppressing
cutaneous wound healing ?(Lai et al., 2009)?, TNF-? has been shown to increase in ARKO mice
?(Bourghardt et al., 2010)?. Androgens have been reported to be inhibitory of inflammatory cytokine
production after haemorrhagic shock and burns ?(Lai, Lai, et al., 2012)?. In contrast to the discussed
studies, testosterone has been shown to reduce TNF-? and IL-1? in hypogonadal men ?(Kalinchenko et
al., 2010; Malkin et al., 2004)?. Men and women with rheumatoid arthritis have significantly decreased
androgen levels in synovial fluid of inflamed tissue ?(Cutolo, 2009)?.

Considering the increased inflammatory markers in hypogonadism and the anti-inflammatory influence of
testosterone in hypogonadal men, Traish et al. suggest that androgens may be necessary in maintaining
inflammatory homeostasis ?(Traish et al., 2018)?. This would be in agreement with a "bell curve" effect
of androgen signaling on cellular homeostasis and consistent with Gibson's description of the new
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appreciation of testosterone as a "goldilocks molecule" ?(Gibson et al., 2018)?.

Dry Eye

Dry eye problems are extremely well reported in anecdotes on our forum and from post-finasteride,
Accutane and SSRI patients. Androgens play a direct role in the development of lacrimal gland
inflammation and aqueous-deficient dry eye disease ?(Morthen et al., 2019)?. Androgen deficiency is a
major cause of dry eye, and this is particularly prevalent in women following the menopausal decrease in
androgen levels ?(K. Li et al., 2017)?. Androgen administration alleviates dry eye symptoms and
increases tear flow in Sjogren syndrome patients, suppresses inflammation in mice models of dry eye, and
completely resolves symptoms in dry eye dogs ?(Morthen et al., 2019)?. Complete androgen insensitivity
syndrome causes dry eye, meibomian gland dysfunction, lipid tear film layer instability and decreased
mucous levels in humans ?(Mantelli et al., 2006)?. Finasteride has been used to generate a rat model of
androgen deficient dry eye, downregulating the AR, disrupting androgen-influenced inflammatory
homeostasis, and significantly increasing levels of the inflammatory cytokines IL-1?, IL-4, IL-6, IL-10,
MMP-8, FasL and TNF-? in the lacrimal glands as compared with control rats ?(K. Li et al., 2017; S.
Singh et al., 2014)?.

The androgen receptor mRNA and protein have been identified in epithelial cell nuclei of the human
meibomian glands, lacrimal glands, cornea and conjunctiva ?(Rocha, 2000; Wickham et al., 2000)?. DHT
has been demonstrated to significantly regulate the expression of approximately 3,000 genes in
immortalized human meibomian gland and conjunctival epithelial cells ?(Khandelwal et al., 2012)?,
including many related to inflammation and mucus production.

The testosterone-induced regulation of numerous immune related gene expressions in the lacrimal tissue
of Sjogren syndrome and diabetic mouse models differed considerably, with a significant inflammatory
effect of androgens in the diabetic mice model as opposed to the anti-inflammatory response seen in the
Sjogren’s syndrome model. AR status was hypothesised as a possible mediating "on/off switch" for the
microenvironment-dependent response ?(Morthen et al., 2019)?. Interestingly, hyperandrogenic PCOS
patients experience dry eye, tear reduction and meibomian gland dysfunction ?(Baser et al., 2016; Bonini
et al., 2007; Yuksel et al., 2015)?, lending further support to the suggestion that appropriate androgen
signaling is required for inflammatory homeostasis. Local AR dysregulation in PFS could underlie the
dry eyes and tear-related symptoms reported by patients.

Skin
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Skin is an androgen-sensitive organ ?(Ashcroft & Mills, 2002)? and a major target of androgen action.
The AR is expressed in human skin fibroblasts, basal cells, sebocytes, pilosebaceous units, sweat gland
secretory cells, dermal papilla, and keratinocytes ?(Alesci & Bornstein, 2000; Pelletier & Ren, 2004)?.
The AR has been shown to have a profound and determinant effect on the collagen content of the skin of
the adult mouse in both genders ?(Markova et al., 2004)?. Immunohistochemical staining has shown that
AR staining intensity and immunoreactivity correlates strongly with the height of the apocrine sweat
secretory epithelium ?(Beier et al., 2004)?, and as low epithelium is associated with inactivity, this would
suggest AR signaling has a direct role in sweat secretion ?(Ceruti et al., 2018)?. Androgens have been
understood to be a leading factor in acne pathogenesis for nearly a century ?(J. B. HAMILTON, 1941)?,
and androgen signaling influences both the sebaceous gland activity and inflammation associated with
acne ?(Lai, Chang, et al., 2012)?. Comprised of sebocytes, the sebaceous gland is are important in
production of sebum, the lipids comprising which are important in skin barrier function, water resistance,
sun damage and UV resistance, and establishment of the commensal bacterial flora of the skin ?(Szöll?si
et al., 2017)?. The sebaceous gland is capable of synthesising pregnenolone from cholesterol via p450
side chain cleavage ?(Thiboutot et al., 2003)? as well as metabolising androgens through enzymes
including hydroxysteroid dehydrogenases and 5 alpha reductase type 1 ?(Szöll?si et al., 2017)?. The
proliferative effects of androgens on sebocytes are dependent on the physiological site of localisation 
?(Akamatsu et al., 1992)?. Recent in vitro investigation has demonstrated differentiation of immature
sebocytes is under strong AR regulation, and lipid synthesis and storage is induced by androgens in an
AR-dependent process. This was demonstrated to be independent of the presence of serum or other
cofactors ?(Barrault et al., 2015)?.

Alteration in skin pigmentation and tanning response is very commonly reported in PFS patients and a
case of PFS involving significant vitiligo was reported by Motofei et al. ?(Motofei et al., 2017)?. Early
observations by Hamilton noted a poor tanning response to ultraviolet radiation in castrated men, and
testosterone treatment would improve melanisation ?(J. HAMILTON, 1948)?. Androgens and the AR are
involved in melanocyte biology and function, and melanocytes synthesise DHT ?(Slominski et al.,
2004)?. Genital skin increases in pigmentation at puberty, and this increase in pigmentation is not seen in
hypogonadal men ?(Köhn et al., 2000)?.

Cooper et al. reported three cases of myotonic dystrophy - a disease associated with low androgen levels -
exhibiting androgen dependent diseases including acne, hidradenitis suppurativa, androgenetic alopecia
and keratosis pilaris. They speculated a functional difference in AR may account for the frontal balding in
myotonic dystrophy, and that in androgen-mediated conditions, the peripheral response to androgens
differs between individuals, mediated by peripheral androgen receptors, with absolute levels of
circulating androgens being of limited importance ?(Cooper et al., 2003)?.
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Mitochondrial function

With broad physiological relevance, AR is an important regulator of overall mitochondrial function and is
suggested to impact gene transcription through retrograde signaling ?(Bajpai et al., 2019)?. Testosterone
had been hypothesised to regulate mitochondrial function owing to prior data including serum levels
correlating with oxidative phosphorylation gene expression in skeletal muscle ?(Pitteloud et al., 2005)?.
In a significant contribution to the understanding of the nonclassical role of the AR, Bajpai et al.
demonstrated that the AR contains a mitochondrial localisation sequence and is imported into the
mitochondria independent of association with ligand where it localises and regulates multiple processes
via signaling cascades. Through a number of studies, they elucidated several roles for the AR in
regulation of mitochondria. AR negatively regulates assembly factors of, and destabilises, oxidative
phosphorylation supercomplexes. The AR is regulatory of the enzymatic activity of oxidative
phosphorylation complexes and a large number of oxidative phosphorylation subunits. The AR regulates
mitochondrial protein translation through control of the expression of nuclear ribosomal genes in the
mitochondria. AR expression was shown to negatively correlate with mitochondrial DNA content and to
TFAM (transcription factor A mitochondrial) protein content, which is regulatory of mitochondrial DNA.
Mitochondrial stress was demonstrated to increase expression of the AR and its import into the
mitochondria, suggesting an intricate link between both ?(Bajpai et al., 2019)?. Taken together, the well
demonstrated impact on mitochondrial function would suggest aberrant AR signaling is capable of
inducing significant mitochondrial dysfunction, which in turn could result in numerous detrimental
effects at the cellular and consequently systemic level. This is of significance to the mechanistic overlap
of wild-type gene amplification and polyglutamine expansion ?(D. A. Monks et al., 2007)? with
consideration as to the aforementioned implication of mitochondrial dysfunction in SBMA. Beyond an
indispensable role in cellular energy production, metabolism, apoptosis and proliferation ?(van der Bliek
et al., 2017)?, mitochondria play a major role in aspects of health and disease ?(Chakrabarty et al., 2018;
Ru?Zhou Zhao et al., 2019)? including t-cell and macrophage immune response ?(Liu & Ho, 2018)?,
neurodegeneration and neuroprotection ?(Darryll M.A. Oliver & P. Hemachandra Reddy, 2019; P. A. Li
et al., 2017)?, sensorineural hearing loss ?(Kamogashira et al., 2015)?, cardiomyopathy ?(Lorenzo et al.,
2013)?, atherosclerosis ?(Hulsmans et al., 2012)?, macular degeneration ?(E. E. Brown et al., 2018)?,
periodontitis ?(Y. Chen et al., 2019)?, non-alcoholic fatty liver disease ?(Simões et al., 2018)?, cancer 
?(Higuchi et al., 2005; K. K. Singh & Modica-Napolitano, 2017)?, and normal aging ?(Y. Wang &
Hekimi, 2015)?.

LH/T Deregulation

PFS patients often report atypical hormonal profiles, and in cases who had profiles from before exposure
to finasteride, a significantly altered hormonal milieu is frequently apparent. Curiously, PFS patients
commonly report LH disproportionately low in relation to Testosterone levels, and this has been noted in
a studied cohort ?(Di Loreto, 2011)?. A feedback loop of hypothalamic gonadotropin-releasing hormone
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(GnRH) and subsequent LH release from the pituitary stimulate male testosterone synthesis, which in turn
negatively regulates GnRH release by acting on steroid receptors in Kiss1/NKB/Dynorphin (KNDy)
neurons ?(V. M. Navarro et al., 2011; Ruka et al., 2016; Smith et al., 2005)?. Neural ARKO male mice
show elevated levels of T ?(Raskin et al., 2009)?, and evidence from ERa knockout additionally
illustrates that the AR plays the primary role in negative-feedback regulation of hypothalamic LH release 
?(Wersinger et al., 1999)?.
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The role of the AR in areas relevant to the neurological and
psychological symptoms of PFS

by phadmin - Monday, March 30, 2020
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Cognitive dysfunction, Anhedonia and Anxiety

Anxiety, loss of motivation, loss of aggression, lack of feelings of wellbeing, severe anhedonia and
visuospatial and cognitive impairment are some the most frequent neuropsychological complaints in PFS.
These can manifest with a profound severity and entail a devastating impact on quality of life. This is
strongly suggestive of impairment in executive, reward and motivational circuitry in the brain. The
important role of metabolite neurosteroids ?(Diotel et al., 2018)?, shown to be broadly deregulated in PFS
?(Melcangi et al., 2017)?, may have additional relevance to these symptomatic areas. However, this is
beyond the scope of this review, which is focused upon a potential pleiotropic pathomechanism with
direct relevance to the full clinical picture and underlying the pathology.

Low serum testosterone is strongly associated with an increase in depression in aging men ?(Ford et al.,
2016)? and men undergoing ADT ?(Lee et al., 2014)?. Androgens have mostly anxiolytic and
antidepressant properties in humans and animals ?(Liang et al., 2018; McHenry et al., 2014; Zarrouf et
al., 2009)?. Androgens regulate gene expression in key areas of the brain that are fundamental to the
etiology of depression and anxiety ?(McHenry et al., 2014)?. AR-deficient mice rapidly develop
depressive-like behaviour with exposure to chronic mild stress ?(Hung et al., 2019)? and significant
comparative reductions in AR in the hypothalamic paraventricular nucleus (PVN) has been identified in
autopsied depression patients ?(Wang et al., 2008)?. Androgen administration has anti-depressive effects
in middle-aged men with low testosterone levels ?(Amanatkar et al., 2014)?. Owens et al. reported
significantly increased AR mRNA in the PFC of patients with bipolar disorder as surprising given the
association of depression with low androgen levels but noted the association of excessive androgen
signaling with psychological illness ?(Owens et al., 2019)?.

Impaired executive functioning and visuospatial abilities are the most frequently reported cognitive
consequences of androgen deprivation therapy ?(Nelson et al., 2008)?. Additionally, multiple lines of
evidence including in anabolic steroid abuse and polycystic ovary syndrome suggests increased androgen
action is markedly associated with psychological illnesses including schizophrenia, psychosis, bipolar
disorder, tics, anxiety and depression ?(Cesta et al., 2016; Piacentino et al., 2015; Wood, 2008)?. In an
important review of the role of androgens in the mesolimbic system and of evidence that both high and
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low androgen signaling causes cognitive impairment in both human and animals, Tobiansky et al.
suggested that optimally required levels of androgen signaling are required within the mesolimbic system 
?(Tobiansky et al., 2018)?. Mesolimbic areas crucial to executive function including the ventral tegmental
area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC) express AR ?(Kritzer, 1997; Low et
al., 2017; Tobiansky et al., 2018)?, areas which functionally align with the effects of androgens on
behaviour ?(Kritzer, 1997)?. As the AR relevant to function in these areas is often not concentrated in
neuronal nuclei, this has been traditionally difficult to quantify and easily overlooked. Executive
functioning, which includes behavioural prioritisation of goal attainment, attention, inhibitory control and
working memory, critically depends on PFC function ?(Tobiansky et al., 2018)?. Importantly, all major
prefrontal cortical projections in the VTA are substantially AR enriched. Androgen signaling regulates
the essential dopamine innervation of the PFC and regulates glutamate signaling, potentially through
these circuits ?(Aubele & Kritzer, 2011)?. The NAc is critically involved in reward behaviour and is an
integrative and convergent site for reward systems in the brain ?(Sesack & Grace, 2009)?. Neurons in the
NAc respond to both excitatory and inhibitory afferents from the ventral hippocampus (vHPC) ?(Scudder
et al., 2018)?. In the rat, AR is colocalised with dopamine neurons in the midbrain that project to the
amygdala and nucleus accumbens ?(Creutz & Kritzer, 2004)?. In line with human studies suggesting an
increase in testosterone raises striatal dopamine ?(Hermans et al., 2010)?, studies in the male rat have
demonstrated AR-driven modulation of molecular measures of dopamine responsivity of the nigrostriatal
pathway including regulating mRNA, levels of molecules involved in pre-synaptic dopamine synthesis,
dopamine reuptake, packaging, breakdown and reception ?(Purves-Tyson et al., 2014)?. Dopamine is
increased in reward regions of the rat brain in under 30 minutes ?(de Souza Silva et al., 2009)?, and the
testosterone-induced effect on reward behaviour is abolished by administration of the dopamine receptor
antagonist ?-flupentixol ?(Packard et al., 1998)?. Coincident with a sharp decline in voluntary physical
activity, AR knockout mice show a substantial loss of dopamine and dopamine receptor expression in the
striatum, with upregulation of mRNA levels of the metabolic enzymes monoamine oxidase A and B 
?(Jardí et al., 2018)?. Alongside a significant reduction in voluntary activity, mice with knockout of
hypothalamus-specific AR exhibited a large decrease in D? receptor mRNA and an increase in MOAB
mRNA ?(Clarke et al., 2019)?. Interestingly, androgen-anabolic steroids significantly decrease D?
receptor in the NAc ?(Kindlundh et al., 2001)? and testosterone administration impairs D? receptor-
dependent set-shifting behaviour in rats ?(Wallin & Wood, 2015)?. DHT treatment inhibits the open-field
induced dopamine increase in the PFC ?(Handa et al., 1997)?. This has important implications for
cognitive functioning considering the importance of PFC functions. Loss of adequate D? receptor
function in the PFC of Rhesus macaques causes cognitive deficits close to surgical ablation of the site 
?(Brozoski et al., 1979; Tobiansky et al., 2018)?.

In late adolescent rats, finasteride remarkably decreases the activity of the dopaminergic system,
exploratory and motor behaviours through decreasing DHT production and consequently androgen
receptor activation on dopamine neurons in the Substantia nigra and VTA. Interestingly, this effect was
not seen in older or younger rats ?(Li et al., 2017)?. The reported reduction in brain DHT of late
adolescent rats had not been observed in younger rats in a previous study ?(Giatti et al., 2015)?,
suggesting significant interruption in brain dopaminergic activity occurs when AR activation is inhibited
during the time testosterone levels are at their natural peak ?(Li et al., 2017)?. This spatiotemporal
observation of age-related difference is of potential relevance to the prevalence of PFS in young adult
men of fertile age.
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Androgens have been demonstrated to modulate the HPA stress response and modulate anxiety
behaviours ?(Mhaouty-Kodja, 2018)?. While all metabolites of testosterone, including DHT, influence
anxiety-like behaviours in animal models, aged male rats are more anxious than female counterparts. This
difference is abolished by prepubertal orchiectomy, demonstrating this difference is androgen dependent 
?(Domonkos et al., 2017)?. Evidence suggests the anxiolytic effect of T is mediated at least in part
through the AR. Men treated with flutamide experience increased anxiety ?(Almeida et al., 2004)?.
Intrahippocampal flutamide increases anxiety behaviour of intact and DHT-replaced male rats, but not
when independently administered to gonadectomised rats ?(Edinger & Frye, 2006)?. Corticotropin-
releasing hormone is an important regulator of the HPA axis and response. AR mediates regulation of
corticotropin-releasing hormone mRNA in the PVN, possibly via AR-colocalising projecting neurons in
the bed nucleus of the stria terminalis ?(Heck & Handa, 2019)?.

Williams et al. demonstrated sex differences in the resilience to stress-induced anhedonia in mice and
revealed an androgen-mediated mechanism underlying lower vHPC-NAc excitability and correlated
increase in subchronic stress resistance in male mice. Reduced sucrose preference following subchronic
variable stress (SVS) was demonstrated to be female specific. Orchidectomy rendered male mice
vulnerable to SVS-induced anhedonia. Testosterone to female mice was protective of SVS-induced
anhedonia and decreased vHPC-NAc excitability in females. Ovariectomy, by contrast, did not affect
female vHPC-NAc neuron excitability, suggesting direct mediation by the AR. It was determined that
vHPC-NAc projection neurons, and many surrounding vHPC CA1 pyramidal cells highly express AR,
and that bath application of the antiandrogen flutamide increased the excitability of cells ?(Williams et
al., 2020)?, further suggesting interruption of androgen signalling conferred this susceptibility. The
identification of this specific androgen-driven circuitry and its causal link to anhedonia suggests that a
tissue-specific deregulation of the AR, as we propose in PFS, would have significant implications for
dopaminergic signalling in the NAc and consequently anhedonia symptoms.

Providing a vital addition to the understanding of both the rapid effect of nonclassical androgen signaling
on human social behaviour and the AR-dependency of testosterone's influence on aggression, Geniole et
al. demonstrated that a single administration of testosterone to men with high-risk personality profiles
increased aggression. This effect was negatively correlated with AR CAG repeat length, with shorter
CAG repeat subjects exhibiting an enhanced effect. These effects were associated with increase reward
feelings associated with aggression as opposed to anger associated with aggression, suggesting a rapid
AR-mediated modulation of dopamine pathways in line with existing evidence ?(Geniole et al., 2019)?.

Conclusively, significant evidence indicates the curvilinear tissue response of androgen action is relevant
to anxiety and mood ?(Owens et al., 2019)? as well as cognitive function ?(Tobiansky et al., 2018)?.
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Memory and spatial processing

Severe memory impairment is a common and problem reported by PFS patients, with many extremely
serious implications for the patient's life. The hippocampus is critical to a broad range of learning,
memory, visual, spatial, and navigatory functions in mammals ?(Eichenbaum, 2017; Rolls & Wirth,
2018)?. In humans, CA1 neurons are crucial to memory formation and retrieval, as well as self-
continuity, autonoetic consciousness and detailed memory revisitation ?(Bartsch et al., 2011)?. The AR is
highly expressed in the hippocampus, particularly in CA1 pyramidal neurons. In addition to nuclear and
cytoplasmic presence, AR is localised in spines, and synaptic AR rapidly responds to androgen, directly
modulating spine density by kinase network activation ?(Hatanaka et al., 2015; Soma et al., 2018)?.
Pyramidal CA1 neurons require NMDA receptors for spatial and temporal memory ?(Huerta et al.,
2000)?. Neural AR deletion in mice impaired NMDAR activation and prevented temporal differentiation
between objects seen, revealing hippocampal CA1 AR is critical for processing of visual temporal
information, possibly through an observed modulation of glutamatergic transmission ?(Picot et al.,
2016)?.

AR overexpression is demonstrated to strongly alter memory-related genes in the CA1 region ?(Ramzan
et al., 2018)?. Finasteride has been demonstrated to significantly decrease brain DHT levels and
reversibly reduce neurogenesis in the hippocampus of mice, affecting neuronal plasticity on a structural
level ?(Römer et al., 2010)?. Hippocampal AR in humans is highly expressed in both sexes. Remarkably,
this is of the same order of magnitude as AR expression in the prostate of BPH patients ?(Beyenburg et
al., 2000)?. Multiple studies suggest androgens as important organisational modulators of hippocampal
physiology that maintain active hippocampal functions throughout life ?(Hamson et al., 2016; Kerr et al.,
1995)?. Perceived male sex-related advantages in spatio-visual and navigatory abilities have been
attributed to androgens rather than evolutionary adaptation ?(Clint et al., 2012)?. Reports on the effects of
androgens on spatial ability have provided contradictory results, suggestive of complex regulation 
?(Shahrzad & Nasser, 2015)?. Men with Alzheimer's disease have lower brain testosterone, and findings
suggest that low androgens may predispose to Alzheimer's ?(Rosario et al., 2011)?. In Alzheimer's
models, testosterone has been demonstrated to exert a protective effect via an AR-mediated increase
hippocampal neurons, synaptic plasticity and dendritic spine density ?(Jia et al., 2019)?. However,
prelimbic testosterone injection causes impairment in spatial learning and memory in male Wistar rats 
?(Gholaminejad et al., 2019)?. Clearly, crucial sites involved in learning, memory and spatial processing
are markedly sensitive to alteration in androgen signaling.

Insomnia and sleep disordered breathing

PFS has driven patients to suicide through the rapid and persistent destruction of their ability to sleep. In
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severely affected patients, this can be total. A patient who had resumed finasteride for a very short time
with a stated aim of maintaining his hair for upcoming wedding photographs committed suicide after
describing the rapid onset of extreme health complaints including debilitating anxiety and insomnia that
prevented any sleep for a month. Severely affected patients often describe poor-quality, brief and
interrupted sleep many years after brief use of the drug. This is an important and disabling symptom, the
severity of which does not appear to be appreciated in literature. Additionally, patients have reported
onset or worsening of sleep apnoea. Irwig found that insomnia was a common complaint in the medical
records of 6 patients who committed suicide following use of Finasteride and development of persistent
symptoms, and this was amongst their most debilitating symptoms ?(Irwig, 2020)?. Evidence suggests
that, as well as low testosterone being associated with a decrease in sleep quality ?(Barrett-Connor et al.,
2008)?, increased androgen signaling may be associated with sleep disruption and disordered breathing.
Higher testosterone levels are associate with lower sleep intensity and higher ventilatory instability in
men ?(Morselli et al., 2018)?, and whole genome methylation analysis has shown elevated AR protein is
associated with obstructive sleep apnoea (OSA) via ventilatory instability ?(Chen et al., 2016)?. High
dose exogenous testosterone can cause significant disruption of sleep to the extent of clinically relevant
harm, as well as inducing and exacerbating OSA ?(Kim & Cho, 2019; Liu et al., 2003)?. Exogenous T
has induced sleep apnoea in a female patient ?(Johnson et al., 1984)?. In the hyperandrogenic condition
PCOS, meta-analysis of research has indicated a significant association of OSA with the syndrome 
?(Helvaci et al., 2017)?. As previously mentioned, a high occurrence of sleep disorders has been reported
in SBMA patients ?(Romigi et al., 2014)?. Androgens act locally in the suprachiasmatic nucleus, the
hypothalamic structure controlling behavioural and physiological circadian rhythms, to influence plastic
structural reorganisation and alter circadian period ?(Model et al., 2015)?. Androgen receptors are present
in the suprachiasmatic nucleus, are regulated locally by androgens, and thus are an obvious site of action
for a direct effect of androgen steroids ?(Karatsoreos & Silver, 2007)?. Significant clinical differences in
the response of healthy men and women to a single dose of Olanzapine ?(Giménez et al., 2011)? suggest
sex differences in the mechanisms regulating sleep (Mong & Cusmano, 2016). The exact influence of sex
steroids over sleep remains an important knowledge gap ?(Mong & Cusmano, 2016)?.

Head pressure

A central and potentially causative role of androgen signaling was recently demonstrated in idiopathic
intracranial hypertension (IIH), which entails an increase of CSF pressure. O'Reilly et al. identified a
pattern of androgen excess in female IIH patients. Like human choroid plexus, rat cells expressed AR
along with androgen-metabolising enzymes. It was demonstrated that testosterone drove CSF output in
rodent choroid plexus cells ?(O’Reilly et al., 2019)?. O'Reilly et al. noted that while a determinant role for
androgens in IIH may seem biologically implausible considering IIH occurs less frequently in men,
androgens are now known to exert sexually dimorphic effects on metabolism. The metabolic phenotype
of hypogonadal men resembles that of women with androgen excess, including an increased risk of type 2
diabetes, non-alcoholic fatty liver disease and cardiovascular mortality ?(Ding et al., 2006; Kautzky-
Willer et al., 2016)?. O'Reilly et al. suggest epigenetic modifications to local androgen action or
differences in AR signaling in both sexes as a plausible explanation, with IIH potentially representing a
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distinctive manifestation of these sex specific differences ?(O’Reilly et al., 2019)?. Interestingly, male IIH
patients are more likely to have symptoms typically associated with androgen insufficiency including
obstructive sleep apnoea, erectile dysfunction and loss of libido ?(Fraser et al., 2010)?. As well, androgen
deprivation therapy or hypogonadism can induce IIH symptomatology ?(Valcamonico et al., 2013)?.
Although in males the metabolic parabola of AR signaling is shifted far to the right compared with
females ?(Ding et al., 2006; Morford et al., 2018)?, significant increases in AR signaling in men are likely
to recapitulate this symptomatology, and we therefore consider it plausible IIH occurs in PFS and
contributes to commonly reported symptoms, including feelings of intense pressure in the head. In this
context, it is of interest that the pilot study of Melcangi et al. evaluating CSF methylation in PFS patients
and controls found only one member of the control group with methylation of SRD5A2, and this patient
had normal-pressure hydrocephalus. The majority of PFS patient samples exhibited variable methylation
of this gene ?(Melcangi et al., 2019)?.

Methylation of SRD5AR2

It is of interest that SRD5A2 was reported to be methylated in most CSF samples in a cohort of PFS
patients. Interestingly, symptoms and severity per validated scales were found not to correlate to the
observed methylation profiles ?(Melcangi et al., 2019)?. This is unlikely to represent a key factor in the
pathological presentation when considering the symptomatic profile, novel factors of the condition and
the lack of significant overlap between PFS and 5 alpha reductase insufficiency ?(Brinkmann et al., 2007;
Imperato-McGinley et al., 1974)?.

5 alpha reductase type II is localised to many areas abundant in dopamine neurons and sites of projection,
and finasteride has been considered for application in conditions associated with increased dopaminergic
signaling including Parkinson's disease, Tourette's syndrome and schizophrenia ?(Castelli et al., 2013)?.
Reduced D2 dopamine receptor binding in the nucleus accumbens has been reported in 5ar2 knockout
mice. This was accompanied with behavioural deficits in aggressive, dominance, mating behaviours,
along with reduced novelty seeking and risk taking. No anxiety-like, motoric or processing deficits were
observed in these mice, and 5ar2 deficiency is not associated with sensorimotor deficit nor abnormalities
in anxiety-like or reward-related behaviours ?(Mosher et al., 2018)?. Further, sexual desire is usually
normal in human patients ?(Brinkmann et al., 2007)?. A role in neurosteroidgenesis could have some
symptomatic relevance given their behavioural influences ?(Edinger & Frye, 2005; Ratner et al., 2019)?.
However, hypotheses regarding the pathological alterations in PFS being localised to the nervous system
do not plausibly account for the symptoms of patients, nor take appropriate account of reported evidence
from investigations of peripheral tissues.

Evidence suggests that the methylation status of SRD5A2 is under regulatory influence of androgen
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signaling. Both serum DHT and SRD5A2 mRNA in seminal vesicles have been demonstrated to
significantly increase in inducible ARKO mice, demonstrating that SRD5A2 is regulated by the AR
through local negative feedback ?(Wu et al., 2019)?. 5ar2 expression in the rat brain has been
demonstrated to be under feed-forward regulation of androgens ?(Torres & Ortega, 2003)?. In the frog
Silurana tropicalis, Bissegger and Langlois demonstrated that while SRD5A2 was not altered at the
mRNA level, DNA methylation of SRD5A2 significantly increased in the testes and ovaries following
treatment with DHT, suggesting androgen modulation of epigenetic mechanisms in both sexes. The
methylation statuses of SRD5A1 and SRD5A3 were not changed following androgen exposure 
?(Bissegger & Langlois, 2016)?.

One possible mechanistic influence of androgen signaling on methylation of SRD5A2 is the role of
androgens in inflammatory regulation and a consequential influence on the methyltransferase enzyme
DNA methyltransferase 1 (DNMT1). Kang et al. found a majority of BPH samples have methylation of
the SRD5A2 promoter, with strong correlation between methylation and low or absent expression of
5alpha reductase 2 ?(Kang et al., 2018)?. Ge et al. reported that, in human prostate samples, DNMT1
regulates methylation of SRD5A2. The methylation of the promotor was shown to be increased by
inflammatory mediators such as tumor necrosis factor ? (TNF-?), Nuclear factor-kappa B (NF-?B), and
Interleukin-6 (IL-6) which upregulate DNMT1 expression. Inhibition of TNF-? restored the expression of
SRD5A2 ?(Ge et al., 2015)?. In prostate cancer cells, androgen signaling crosstalk exists with
inflammatory signaling (Malinen et al., 2017). As previously discussed, the AR has an upregulatory effect
on TNF-? expression and is thus suppressive of cutaneous wound healing ?(Lai et al., 2009)?. DHT
activates macrophage TNF-? secretion through AR signaling in prostatic urethral tissue ?(Zhao et al.,
2017)?. In the CNS, epigenetic macrophage activation increases proinflammatory cytokines and
chemokines, including TNF-? and IL-6 ?(Yin et al., 2017)?.
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Androgen mediated pleiotropy?

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/androgen-mediated-pleiotropy/

The case for diverse pathological effects arising from androgen-mediated pleiotropic mechanisms is
increasingly clear beyond conditions already discussed such as PCOS and SBMA. The AR and its role in
health is a fast-expanding research area of high priority ?(Takayama, 2017)?. The largest genome-wide
association study to date in AGA research established a statistically significant positive association
between AGA and other age and androgen related traits such as bone mineral density and early puberty,
supporting a case for an androgen mediated pleiotropy underlying multiple conditions, as proposed by
Yap et al ?(Yap et al., 2018)?. Considering the common androgenic pathogenesis of both AGA and BPH,
Ramsamy et al. found that as the grade of AGA increased, there was an increase in the size of the
prostate, with 66.7% of men evaluated experiencing severe AGA having an enlarged prostate 
?(Subramaniyan et al., 2016)?. AGA patients are more prone to prostate enlargement and related
symptoms ?(Monib et al., 2018)?.

Pleiotropic epigenetic factors can mediate a multi-system and clinically significant repression of AR
expression. AIS type II is a type of Androgen Insensitivity Syndrome that presents clinically without
mutation in the AR gene sequence ?(N. C. Hornig et al., 2016)?. Fewer than 40% of patients with
diagnosed Partial AIS exhibit AR gene mutation, suggesting epigenetic involvement in androgen-
insensitive phenotypes without sequence alterations. Hornig et al. recently provided a molecular diagnosis
for the clinical presentation of AIS type II. Identifying significant reduction in AR mRNA levels in the
genital fibroblasts of 57% of the cases, they additionally demonstrated methylation levels of two CpG
sites in the proximal AR promoter region inversely correlated significantly to the expression of AR
mRNA expression levels ?(Nadine C Hornig et al., 2018)?.

Noting the incomplete understanding of major chronic disease and the advancing understanding of the
effects of androgens on major contributors to global mortality including immune function, cancer,
cardiovascular disease and diabetes, Schooling considered the potential for androgens to be considered in
a pleiotropic context to explain the higher vulnerability to disease mortality and earlier death observed in
males than women. She suggests that "considering androgens as potential contributors to major diseases
represents a major paradigm shift that flies in the face of individual level data from observational
studies", and that a "rethink of the role of androgens, particularly, in immune function, cancer and
cardiovascular disease, as potentially providing an underlying explanatory mechanism that could address
the noted sex disparity in life expectancy, help identify new specific targets of intervention, explain
unexpected side effects of commonly used drugs and eventually provide targets for precision medicine" 
?(Schooling, 2015)?. In this context, PFS is likely to provide novel insights and considerable translational
benefits to wider biological understanding and of mechanistic factors in better-recognised disease states.

                                165 / 187

https://www.propeciahelp.com/androgen-mediated-pleiotropy/


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

Page Bibliography

1. Hornig, N. C., Ukat, M., Schweikert, H. U., Hiort, O., Werner, R., Drop, S. L. S., Cools, M.,
Hughes, I. A., Audi, L., Ahmed, S. F., Demiri, J., Rodens, P., Worch, L., Wehner, G., Kulle, A.
E., Dunstheimer, D., Müller-Roßberg, E., Reinehr, T., Hadidi, A. T., … Holterhus, P.-M. (2016).
Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining
Endogenous AR Activity. The Journal of Clinical Endocrinology & Metabolism, 4468–4477. 
https://doi.org/10.1210/jc.2016-1990

2. Hornig, Nadine C, Rodens, P., Dörr, H., Hubner, N. C., Kulle, A. E., Schweikert, H.-U., Welzel,
M., Bens, S., Hiort, O., Werner, R., Gonzalves, S., Eckstein, A. K., Cools, M., Verrijn-Stuart, A.,
Stunnenberg, H. G., Siebert, R., Ammerpohl, O., & Holterhus, P.-M. (2018). Epigenetic
Repression of Androgen Receptor Transcription in Mutation-Negative Androgen Insensitivity
Syndrome (AIS Type II). The Journal of Clinical Endocrinology & Metabolism, 4617–4627. 
https://doi.org/10.1210/jc.2018-00052

3. Monib, K. M. E., Hussein, M. S., & Kandeel, W. S. (2018). The relation between androgenetic
thin hair diagnosed by trichoscope and benign prostatic hyperplasia. Journal of Cosmetic
Dermatology, 1502–1506. https://doi.org/10.1111/jocd.12835

4. Schooling, C. M. (2015). Could androgens be relevant to partly explain why men have lower life
expectancy than women? Journal of Epidemiology and Community Health, 324–328. 
https://doi.org/10.1136/jech-2015-206336

5. Subramaniyan, R., Ramsamy, K., & Patra, A. (2016). An observational study of the association
between androgenetic alopecia and size of the prostate. International Journal of Trichology, 62. 
https://doi.org/10.4103/0974-7753.188034

6. Takayama, K. (2017). The biological and clinical advances of androgen receptor function in age-
related diseases and cancer [Review]. Endocrine Journal, 933–946. 
https://doi.org/10.1507/endocrj.ej17-0328

7. Yap, C. X., Sidorenko, J., Wu, Y., Kemper, K. E., Yang, J., Wray, N. R., Robinson, M. R., &
Visscher, P. M. (2018). Dissection of genetic variation and evidence for pleiotropy in male pattern
baldness. Nature Communications. https://doi.org/10.1038/s41467-018-07862-y

                                166 / 187

https://doi.org/10.1210/jc.2016-1990
https://doi.org/10.1210/jc.2018-00052
https://doi.org/10.1111/jocd.12835
https://doi.org/10.1136/jech-2015-206336
https://doi.org/10.4103/0974-7753.188034
https://doi.org/10.1507/endocrj.ej17-0328
https://doi.org/10.1038/s41467-018-07862-y


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

_______________________________________________

                                167 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

Current situation is dangerous

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/current-situation-is-dangerous/

An urgent clinical failure

With [humility] comes not only reverence for truth, but also proper estimation of the difficulties
encountered in our search for it. …[T]his grace of humility is a precious gift.

William Osler, Aequanimitas: with other addresses to medical students, nurses and practitioners
of medicine, 1849-1919

The stigma associated with sexual and mental dysfunctions, as well as a lack of medical support, are
causing PFS to become a hidden epidemic. The scale and human cost of this failure cannot solely be
attributed to pharmaceutical manufacturers. Rather, it is the result of a systemic clinical approach to
ADRs that is not fit for purpose when considering a disease that manifests or progresses following
withdrawal without a known biomarker. The staunch resistance patients continue to face in attempts to
establish the very existence of the condition does not stem solely from the significant financial interest in
antiandrogenic substances as first-line treatments in dermatology, but its ostensible implausibility given a
remarkable reality and broad clinical endpoints. A perfect storm of novelty, rarity, and counter-intuitive
clinical presentation compound clinical, pharmaceutical and regulatory failures to entrench a situation in
which internet resources such as propeciahelp represent the only support for patients suffering profoundly
following exposure to antiandrogenic endocrine disruptors. As symptoms vary between patients from
moderate functional impairments to a life-threatening physiological and neuropsychological breakdown,
this is an unsustainable situation that cannot continue.

Disturbingly, clinicians appear significantly more likely to report an ADR resulting from 5ari therapy in
older men typically prescribed finasteride 5mg, despite the ADRs in this group being fewer and less
frequently associated with lasting disability. Considering FAERS adverse event reports in the period
April 2011 to October 2014, a significant majority of ADRs resulting from use of 1mg Finasteride by
younger men were self-reported to the FDA despite a higher reported incidence of disability.
Contrastingly, most side effects in older patients were reported by their doctors ?(Baas et al., 2018)?.
With consideration to the alarming dissatisfaction amongst PFS patients with regards to clinical care
reported by Ganzer et al. ?(Ganzer et al., 2014)?, this could indicate a widespread dismissal at the clinical
level due to an erroneous assumption that patients' symptoms are not possible and/or psychosomatic in
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nature. This would reflect the ubiquitous dissatisfaction of patients describing their experiences seeking
help from primary care physicians and the ostensibly appropriate specialists in fields to which their
symptomatology can generally be associated including urology and psychology. This deters patients with
already stigmatising problems from professional engagement. This is extremely serious, as
pharmacovigilant entities including the European Medicines Agency rely upon doctors to submit adverse
event reports when reported by patients. Traish suggested that a misleading narrative that the condition
does not exist has arisen from the current dearth of awareness and knowledge in the clinical community 
?(Traish, 2018)? despite the body of literature suggesting epigenetic susceptibility in a subset of
consumers ?(Traish, 2020)?. He notes that patients are frustrated by the perception in the medical
community that such condition does not exist and that they are labelled to suffer from psychological
disorder, rather than an organic disorder, attributed to the inhibition of a key biochemical pathway in
steroid biosynthesis and metabolism. Traish suggests this, along with the lack of attention to improve care
for afflicted patients, has "translated into loss of credibility and confidence by patients in their doctors and
huge loss of faith in the medical community at large" ?(Traish, 2018)?.

As of 2020, the status quo in frontline care is presenting a perilous circumstance to both existing PFS
patients and the wider public. Awareness of PFS as a clinical entity is unacceptably poor amongst the
medical profession and education is urgently needed ?(Garreton et al., 2016; Traish, 2020)?. Failure to
acknowledge the novelty and clinical scope of the pathology continues to delay progress towards
etiological understanding. The fact that Vice media have demonstrated a deeper understanding of the post-
withdrawal "crash" than medical literature is a matter of concern ?(Morgans, 2018)?. The consequence of
this void in clinical understanding has not only led to a lack of basic science, but the potential for PFS
patients to be prescribed therapies that can result in additional and permanent harm, including SSRI
medications. It is deeply concerning that, instead of psychological support being offered as adjunctive
care alongside appropriate recognition of what is a serious physiological disorder, doctors are frequently
issuing rapid and inappropriate psychosomatic diagnosis for what is nearly always a striking and clear
description of health problems never before experienced by the patient following taking and ceasing
Finasteride. Healy et al. note that this is similarly the experience for patients suffering persistently after
SSRI antidepressant use, commenting that even though patients report normal sexual function prior to use
and neither depression nor anxiety can account for symptomatic presentations, "physicians appear to
default to attributing problems a patient has after treatment to manifestations of an underlying nervous
diathesis" ?(David Healy et al., 2018)?. This is unacceptable and unjustifiable given how deeply complex
the issue is and how much there is yet to know regarding the physiological consequences of endocrine
disruption with 5aris ?(Traish et al., 2015)?.

Psychosomatic misdiagnosis has, in extreme cases, caused patients to be deprived of their liberty through
admission to psychiatric institutions. Patients have expressed feeling intense fear after being pressured
into taking psychiatric drugs that have had a profound negative impact their condition. Routinely,
additional stress, confusion and harm is caused to those suffering extreme symptoms by what is
tantamount to "gaslighting" ?(Thomas, 2018)? by clinicians and psychologists. The combination of
clinical arrogance and ignorance is egregious and difficult to excuse at this stage. Maksym concluded that
the lasting consequences of antiandrogen therapy on the organism remain obscure, and can be highly
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complex and multilateral, noting the extensive metabolism of steroid hormones in the central nervous
system. They state that the presence of severe and persistent effects caused by the treatment of an
aesthetic issue raises great concern for the clinician given the widespread use in young and healthy
individuals, and that the low estimated prevalence of PFS cannot excuse nonvigilance ?(Maksym et al.,
2019)?.

Those PFS patients who are most severely affected are those who are most vulnerable to these systemic
failings. Many patients are very young, and young men left unable to function socially, work or continue
their studies due to debilitating physiological and neurological symptoms can be left reliant on support
from family and friends who cannot always understand or appreciate the etiology of their behavioural
changes. Those around the patient will understandably defer to professional assessment, and simplistic
misattribution is frequently the outcome. When physiological processes far beyond the patient's control
are responsible, this psychosomatic misattribution by those in positions of medical authority unfamiliar
with PFS or literature regarding the condition can often have devastating interpersonal consequences for
patients already in an unimaginably desperate situation. The potential etiological overlap between the
recognised persistent syndrome occurring rarely with serotonergic treatment and PFS is an emergent
consideration in medical literature ?(David Healy et al., 2018; Giatti et al., 2018)?. Importantly, recent
research has identified profound interruption of the androgen steroid pathway by SSRI antidepressants 
?(Griffin & Mellon, 1999; Hansen et al., 2017; Jacobsen et al., 2015; Munkboel et al., 2018)?. In context
of anecdotal reports from PFS patients of significant worsening following exposure to serotonergic drugs,
an extremely cautious approach should therefore be taken when considering prescription of serotonergic
medications to patients reporting enduring health problems not experienced prior to finasteride use.

Recognising a consistent and concerning failure in the clinical care of our patients, we issued Post-
Finasteride patients the Short Assessment of Patient Satisfaction, a robust measure of patient satisfaction
with their experience in clinical practice ?(Hawthorne et al., 2014)? as part of a wider survey. Patients
were asked to complete the assessment once if they had seen only one professional with regards to PFS. If
they had seen more than one clinical professional about PFS, we asked them to complete the
questionnaire twice: Once considering their most positive experience with regards to an appointment, and
once considering their most negative experience. After 170 submissions, the results were remarkable and
alarming. The average score regarding even the most positive experiences PFS patients have had with a
clinical appointment is on the verge between dissatisfaction and serious dissatisfaction, denoting that
“severe and urgent failings” are the norm for PFS patients seeking healthcare support, and that the very
best they can hope for is a dissatisfactory clinical outcome (Propeciahelp Post Drug Syndrome Survey:
Data not provided). We will seek to publish this data in the future.

Disappointingly, PFS represents a neglected opportunity to broaden scientific understanding of biological
mechanisms critical to human health and will undoubtedly bridge identified knowledge gaps in the
understanding of endocrine disruption ?(Solecki et al., 2016)?. As well as a virtue, professional humility
is important to being a good doctor ?(Chou et al., 2014; DuBois et al., 2013; Mahant et al., 2012; Wear,
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2008)?, and the vast anecdotal experience of our patients attests to a widespread shortcoming in this
regard. That physicians commonly deem what has happened to those suffering PFS as implausible or
impossible is telling as to the biological significance of this disease. In his commentary stressing the
importance of humility in medical professionals and scientists to avoid future harms, Ritterman notes that
the "problem of mistaken ideas persisting despite scientific evidence to the contrary has been present
since the onset of the scientific method…This problem is of particular concern in medical science, where
outmoded ideas translate into excess morbidity and mortality" ?(Ritterman, 2017)?. What differentiates
our remarkable situation from examples of historic medical ignorance such as this is that, in 2020, there
exists compelling objective evidence which can be contextualised, as we have attempted to the best of our
ability, in a broader framework of biological understanding. It is now abundantly clear that the androgen
pathway has critical roles across the entire organism, and that understanding of the implications of this on
health has expanded rapidly. With so much yet to be elucidated, and such profound effects described by a
subpopulation of consumers for years, the arrogance faced by our patients when reporting their drug-
induced symptoms is impossible to justify. "If the toxin is professional arrogance," Ritterman wrote, "the
antidote is professional humility". 

In the absence of the acknowledgement of the true scope of the condition, informed consent to the risk of
PFS is never obtained from AGA patients commencing Finasteride therapy. Demand for - and marketing
of - antiandrogenic hair loss remedies such as Finasteride is expanding, and an inevitable consequence
will be more cases of PFS. As of 2020, emergent subscription services are engaging in social media
advertising campaigns with modern production values. Hims present a video of young woman in a lab
coat visibly laughing while saying that "anything (sic) can write anything on google". Another woman,
also wearing a lab coat, assures consumers that "fewer than 1% of men actually experience side effects,
but don't be scared; this happens to very few men, and we're here to help you if it does" ?(Hims, 2018)?.
What that help consists of is difficult to infer, considering we nor professors engaged with the issue in the
fields of neuroendocrinology, urology, andrology, steroid biology and psychology seeking an explanation
as to this breakdown of expected function in the androgen pathway are aware of any effective and safe
treatment. Manual are an internet-based prescription company who at time of writing advertise on social
networks including the image sharing service Snapchat. They state on a web page intending to answer
frequent questions about Finasteride that "Animal studies did not show negative effects on fertility." 
?(Manual, 2019)?. As we have previously discussed, animal studies have entailed a deficiency in fertility
parameters that is transgenerational ?(Garcia et al., 2012; Kolasa-Wo?osiuk et al., 2019)?. We are already
receiving new PFS patients citing having taken finasteride after receiving the marketing of the companies
mentioned. Considering increasing primary objective evidence in study of PFS patients, the multitude of
deleterious molecular level effects in animal research and the numerous reviews stating that this is a rare
and distinct clinical entity, those promoting Finasteride as a safe product for young men without warning
of PFS can easily be likened to the tobacco executives of the 1980s. As public appreciation grew of the
dangers associated with smoking, advertisement campaigns designed to obfuscate reality, including a
smoker depicted to be saying "Please don't tell me my cigarette smoke is harmful to you. There's just no
convincing proof that it is" (?United States v. Philip Morris USA Inc.?, 2006).

Certain dermatologists remain opposed to acknowledgement of what is physiologically happening to a

                                171 / 187



propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

subset of consumers after taking finasteride. In a report of a single AGA patient without a depressive
history who presented with sexual dysfunction following Finasteride withdrawal, Trüeb et al. presented a
hypotheses that PFS is a "delusional disorder" ?(Trüeb et al., 2019)?. Trüeb suggests that the airing of a
documentary on Swiss television may have had a psychosomatic influence on this patient and hypothesise
the condition to be one of a "mass hysteria". The authors define mass hysteria as many people believing
"obviously false and potentially distressing things based purely on hearsay". By their own definition, this
does not apply to PFS considering basic science and animal research, as well as the outcomes of several
case-controlled studies of PFS patients, which are not addressed. ADR data additionally refutes this
suggestion: Ali et al. had previously considered the potential for bias due to stimulated reporting of
persistent sexual dysfunction. Analysing FAERS adverse event data, Ali et al. acknowledged an increase
in ADRs, but noted that significant signals with a 95% confidence interval lower limit of 2.0 or greater
exists before and after 2011, irrespective of the public's knowledge of sexual dysfunction as a safety
concern associated with finasteride. Ali et al. considered underreporting likely and the actual incidences
of persistent sexual dysfunction to be potentially underestimated ?(Ali et al., 2015)?. Based upon their
hypothesis and without any reported success in remediating the symptoms of their single patient, Trüeb et
al. encourage the prescription of psychiatric medicines for an "underlying psychopathological disorder".
First line treatments for depression ordinarily fail and have commonly worsened PFS patients as we have
discussed. SSRIs are frequently antiandrogenic ?(Hansen et al., 2017; Jacobsen et al., 2015; Munkboel et
al., 2018)? and are associated with a remarkably similar persistent cognitive, physiological and sexual
dysfunction with the potential to represent a single syndrome ?(David Healy et al., 2018)?. As such, this
baseless and irresponsible recommendation is not without the potential to result in harm to profoundly
vulnerable patients should it influence clinical practitioners. It is interesting, however, that even in a
commentary seeking to cast doubt on the existence of PFS as an organic condition, there is some
awareness of a key novelty of the syndrome common to self-reports: The subsequential nature of onset or
intensification frequently featured in patient reports ?(Trüeb et al., 2019)?. The author declares no conflict
of interest despite stating that his private hair clinic continues to prescribe the drug after two decades of
doing so.

Patient driven platforms cannot compensate for clinical disregard

While propeciahelp continues to provide as much support to patients as is feasible, this is a serious
medical problem and patient-operated support platforms cannot possibly compensate for the entrenched
failures in clinical practice that both patients and medical literature continue to highlight. Maksym et al.
recognise the variable reporting in different healthcare settings is making the problem hard to evaluate 
?(Maksym et al., 2019)?. Patients who have suddenly stopped visiting the propeciahelp forum are
impossible to account for due to anonymity. Failure to achieve diagnosis of this syndrome and improper
clinical inquiry means valuable medical records and investigation are usually non-existent or cannot be
pursued in context. This is especially serious in the cases of those experiencing extremely severe and
degenerative health problems, who can disappear suddenly and untraceably after expressing suicidality
due to the extent of their symptoms. Clinical appreciation of PFS must be improved to provide patients
accurate diagnosis and ensure the proper contextual documenting of patients with appropriate follow-up.
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As severely affected patients are regularly left unable to work due to resultant disabilities, the lack of
professional recognition is hampering their ability to receive much-needed financial support from welfare
systems. Post-mortem study will likely be extremely beneficial to a mechanistic understanding of the
induced epigenetic changes in PFS, and this is dependent on appropriate diagnosis and clinical profiling.

Clinical disregard and a dire need for hope compounds the potential for the exploitation of a vulnerable
and often desperate cohort by individuals or businesses offering simplistic explanations and suggesting
treatments. The risk of additional harms resulting from self-medication in attempts to relieve debilitating
symptoms is significant, particularly amongst the worst affected. The inability of specialist doctors to
provide answers or symptomatic relief drives some patients to embark upon self-experimentation.
Patients will commonly express belief that supradietary doses of concentrated "natural" extracts, vitamins
or minerals have a preferential safety profile as compared with that of pharmaceutical drugs in the
attempted alleviation of PFS symptoms. In patients that can exhibit a novel fragility to any further
disruption of the androgen pathway, therapeutic attempts with both clinically prescribed pharmaceuticals
and self-sought nutraceuticals have led to permanent worsening and directly preceded completed suicide.
It is urgent and imperative that clinicians presented with PFS patients inform the patient of a
physiological vulnerability to substances with endocrine disruptive properties. This is particularly
important for severely affected cases of PFS who present following a short exposure to Finasteride or
other causative antiandrogenic substance.

A desperate need for improvement often results in a significant selection bias on the part of patients when
considering other patient reports. This can often involve a rejection of the complex situation in favour of
alternative health or pseudoscientific concepts. Strong views and poorly defined etiological conclusions
can be rapidly formed. Significant heterogeneity in clinical endpoints results in many patients having a
poor appreciation of the situation for other patients, or as indicative of a vast array of etiologically distinct
disease states. A well-known parable describes a group of blind men touching an elephant. Grasping the
tusk, one believes it to be a spear. Another touching its leg is sure it is a tree. A third man near the trunk
asserts it is a snake, while the man touching its ear believes it to be a fan, and the tale concludes with
vehement arguments based on a selective perception ?(Snyder & Ford, 1987)?. This analogy is
appropriate and can be well observed. Mild to moderately affected patients can find reading the
experiences and clinical condition of severely affected patients to be psychologically difficult, potentially
owing to uncertainty surrounding their own prognoses. This contributes to an incohesive community and
increases the difficulty of representing the true scale of the issue.

Propeciahelp’s volunteer staff, who are suffering ourselves, are placed in a deeply difficult situation in
which we must constantly advise patients to be wary of theoretical proclamations and treatment
suggestions online, while being aware that clinicians cannot currently provide practical help and often
present an equal risk to PFS patients. It is our opinion that there will be serious questions to be answered
in the future as to why such obstacles were faced in the clinical acknowledgement of a disease as deeply
serious and biologically significant as Post-Finasteride Syndrome.
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Regulatory activity is overdue

Reappraisal of the use cases for these substances is necessitated at the regulatory level, ensuring adequate
warning and mandating informed consent as to the potential of developing this condition. PFS has no
known predictive factors, unpredictable severity between patients, a complete absence of dose-
dependence, and no available therapeutic options for any of the affected symptomatic domains. PFS does
not conform to the presentation of known disease state and consumers are not placed to imagine the
potential implications on their physiology, minds, and lives; an impact which cannot be overstated and is
not currently widely appreciated at the clinical level. PFS patients almost invariably express shock and
disbelief at what is happening to them. In this regard we support the conclusion of Motofei et al. insofar
as the patient must be informed and consent to the full potential health risk. Motofei notes that this is
especially important in aesthetic treatment, as therapy of AGA with dutasteride places treatment of an
aesthetic condition on the same level as a life-threatening disease ?(Motofei et al., 2019)?. In the rare
instance a consumer were so psychologically distraught by hair loss they would countenance the risk of
irreparable physical damage and the permanent loss of sexual, neurological and physiological function,
there is simply no excuse for the current situation in which consumers are not informed that this disease
even exists as novel clinical entity with all it entails per se. Measures to address this must begin now. In
particular, the dermatology profession should at a minimum address failure in assessing patient’s pre-
treatment conditions, pursue a fully informed consent, and begin effective reporting of adverse events
according to national and supranational guidelines. As we are discussing frontline drugs of the
dermatology profession that represent a significant worldwide revenue, at this late stage we pragmatically
recognise that regulatory action will have to precede any widespread self-initiated clinical responsibility.
A simple truth can be represented by the words of Upton Sinclair: "It is difficult to get a man to
understand something, when his salary depends upon his not understanding it" ?(Sinclair, 1994)?.

A good therapy should have tissue selectivity to the pathogenesis and not broadly interfere with other
important processes in humans ?(Zheng et al., 2006)?. Finasteride interferes with fundamental and
ubiquitous physiological processes ?(Traish, 2020)?, with PFS manifesting in some consumers as a
disastrous and permanent result of this. Many scientific insights into the critical role of androgens across
the body and brain were not appreciated at the time of its approval. While there is now significant post-
marketing evidence and animal research illustrating the systemic influence and thus potential danger of
finasteride, the evidentiary basis for its continued presentation as safe product is not robust ?(Belknap et
al., 2015)?. Adverse reaction warnings in the product leaflet of Finasteride remain direly inadequate and
do not include PFS as a distinct entity, do not mention the post-withdrawal development seen in the
majority of PFS cases, nor most of the multi-systemic symptoms PFS entails. These are well recognised
in publications centring on patient reports, as we have discussed, and it is noted that despite this evidence
the leaflet continues to make little mention of the broad symptom profile ?(Walf et al., 2018)?. It is
therefore unacceptable that consumers are still presented with a wolf in sheep's clothing. PFS is not
imaginable by those thankfully able to take what it can strip away for granted: The emotional, physical
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and intellectual joys of human experience, and, often, even the ability earn a subsistence income. Patisaul
and Belcher suggest that, when considering risk from EDCs, the human brain performs a risk assessment
as it would in anything else: "Using an imperfect calculus incorporating intuition, experience, a mix of
facts (and more often fiction) combined with something like raw gut instinct", generally favouring short
term benefit over the possibility of long term harm ?(Patisaul & Belcher, 2017)?. This "common sense"
risk calculus is not adequate in the absence of accurate information, as it is novel amongst adverse drug
reactions and astonishingly counter-intuitive. It is wholly unreasonable to presume consumers are placed
to consider such an outcome as even the remotest possibility, particularly in absence of their doctors nor
the product labelling making it abundantly clear that men are experiencing horrendous and progressive
changes to the physiological structure and function of their bodies and minds as a result of taking as little
as one tablet.

It cannot be emphasised strongly enough that we are primarily discussing finasteride prescribed as a
cosmetic product. It is our strong contention that members of the public will rightly consider such an
indication to be held to a considerably higher bar of safety than drugs for serious medical conditions, yet
the de facto reality speaks to the opposite. Review after review now acknowledges evidential support for
the existence of PFS and therefore the need for adequate consent to the potential risk to health and quality
of life upon prescription of finasteride ?(Irwig, 2015; Maksym et al., 2019; Motofei et al., 2019; Said &
Mehta, 2018; Than et al., 2018; Traish, 2020)?. In the absence of accurate clinical communication of the
full risk to the patient, informed consent can never currently be obtained. Multidisciplinary scientific
conclusion is not reflected in pharmacovigilant activity. The status quo begs the question: What precisely
will it take to achieve the most basic of protections for the public? Discussing regulatory action in regards
to endocrine disruptors for the protection of human health in their 2012 guidance to decision makers, the
WHO describe that the 1973 United States ban on tetraethyl lead in gasoline followed "decades of
inaction" during which children were continually exposed to a serious health risk. They suggest that
"perhaps the answer is in making more use of the precautionary principle to ban or restrict chemicals in
order to reduce exposure early, even when there are significant but incomplete data and before there is
significant and long-lasting harm" ?(Bergman et al., 2012)?. Significant data exists with which conclude
Finasteride is inestimably dangerous in a subpopulation, causes permanent harm, and that this is not
positively correlated to duration of use. This justifies its withdrawal from sale as a cosmetic. Rosario and
Bourke, discussing underappreciated cardiovascular risk associated with modern antiandrogen treatments
in prostate cancer, suggest that in an era of media soundbytes and "wonder drugs" that men will insist on,
the scientific community must respond and remain circumspect, with regulatory bodies, trial oversight
committees, reviewers and editors having a duty of care "to ensure the correct health warnings go out
alongside the positive messages" ?(Rosario & Bourke, 2020)?. If this is deemed the necessary response in
the treatment of life threatening cancer, it is unfathomable that this vigilance should not be all the more
appropriate to the prescription of antiandrogens to young healthy men for conditions like AGA and acne -
conditions which are very mild in terms of androgen-mediated pathologies ?(Heemers & Tindall, 2007)?.
Wolfgang Becker-Brüser, editor in chief of the German medical journal Arznei-Telegramm, recently
stated that the “very serious side effects caused by finasteride [are] absolutely unacceptable for a lifestyle
drug. Rationally, one cannot advocate for this medicine or justify the fact that it’s still on the market.
Actually, it should be banned” ?(Südwestrundfunk, 2019)?.
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Some authors continue to call for repeated placebo-controlled trials to determine the existence of
persistent effects from finasteride, considering little else to be of sufficient evidential quality ?(Basaria et
al., 2016; Diviccaro et al., 2020; Gray & Semla, 2019)?. Further study of this kind will not be
enlightening nor practically useful to the scientific community, the PFS patient or consumer in the
medium term, if ever. It is urgently necessary to acknowledge both the novel nature of the condition and
the rarity of the syndrome ?(Traish, 2018)? for a pragmatic approach. Considering the medical history of
6 PFS patients who committed suicide, Irwig noted that a prospective study that may determine causality
would likely require at least 10,000 participants in each arm and a duration of at least 5 years, making it
practically and financially unfeasible ?(Irwig, 2020)?. It is very possible that even in such a trial,
occurrence of PFS would not reach signal. Rarity, however, cannot and should not be construed to justify
dismissal of the gravity of this condition ?(Maksym et al., 2019)?. This is particularly relevant with
consideration to the unpredictability and dose-independence of PFS, and its atypical progression
following withdrawal. Dismissal of retrospective studies is often attempted owing to a perceived lack of
credibility in normal instances of ADR. This disease is not a normal ADR, to the point that existing drug
reaction algorithms are unable to accommodate it ?(David Healy et al., 2018)?. As well as statistical
rarity, objective differences at the molecular level in control study of patients are increasingly established
in PFS. A pragmatic approach to any progress must take the reality of this issue into account, not defer to
an arbitrary standard of perceived evidential quality appropriate to a more ordinary adverse drug reaction
while patients continue to be driven to suicide by profound and unresolvable suffering. Insistence on the
application of a formula that is not fit for purpose in this circumstance manifests as a dereliction of duty.
This will be at the expense of lives that could be saved by the most basic of warnings. It is astonishing to
consider that mechanistic elucidation may now plausibly precede acknowledgement of a syndrome that
has been clinically reported by patients for two decades. Patients cannot continue to shoulder this global
problem in lieu of clinicians.

Page Bibliography

1. Ali, A. K., Heran, B. S., & Etminan, M. (2015). Persistent Sexual Dysfunction and Suicidal
Ideation in Young Men Treated with Low-Dose Finasteride: A Pharmacovigilance Study. 
Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 687–695. 
https://doi.org/10.1002/phar.1612

2. Baas, W. R., Butcher, M. J., Lwin, A., Holland, B., Herberts, M., Clemons, J., Delfino, K., Althof,
S., Kohler, T. S., & McVary, K. T. (2018). A Review of the FAERS Data on 5-Alpha Reductase
Inhibitors: Implications for Postfinasteride Syndrome. Urology, 143–149. 
https://doi.org/10.1016/j.urology.2018.06.022

3. Basaria, S., Jasuja, R., Huang, G., Wharton, W., Pan, H., Pencina, K., Li, Z., Travison, T. G.,
Bhawan, J., Gonthier, R., Labrie, F., Dury, A. Y., Serra, C., Papazian, A., O’Leary, M., Amr, S.,
Storer, T. W., Stern, E., & Bhasin, S. (2016). Characteristics of Men Who Report Persistent
Sexual Symptoms After Finasteride Use for Hair Loss. The Journal of Clinical Endocrinology &

                                176 / 187

https://doi.org/10.1002/phar.1612
https://doi.org/10.1016/j.urology.2018.06.022


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

Metabolism, 4669–4680. https://doi.org/10.1210/jc.2016-2726

4. Belknap, S. M., Aslam, I., Kiguradze, T., Temps, W. H., Yarnold, P. R., Cashy, J., Brannigan, R.
E., Micali, G., Nardone, B., & West, D. P. (2015). Adverse Event Reporting in Clinical Trials of
Finasteride for Androgenic Alopecia. JAMA Dermatology, 600.
https://doi.org/10.1001/jamadermatol.2015.36

5. Bergman, Å., Heindel, J., Jobling, S., Kidd, K., & Zoeller, R. T. (2012). State-of-the-science of
endocrine disrupting chemicals, 2012. Toxicology Letters, S3. 
https://doi.org/10.1016/j.toxlet.2012.03.020

6. Chou, C. M., Kellom, K., & Shea, J. A. (2014). Attitudes and Habits of Highly Humanistic
Physicians. Academic Medicine, 1252–1258. https://doi.org/10.1097/acm.0000000000000405

7. David Healy, Joanna Le Noury, & Derelie Mangin. (2018). Enduring sexual dysfunction after
treatment with antidepressants, 5?-reductase inhibitors and isotretinoin: 300 cases. International
Journal of Risk & Safety in Medicine, 125–134. https://doi.org/10.3233/JRS-180744

8. Diviccaro, S., Melcangi, R. C., & Giatti, S. (2020). Post-finasteride syndrome: An emerging
clinical problem. Neurobiology of Stress, 100209. https://doi.org/10.1016/j.ynstr.2019.100209

9. DuBois, J. M., Kraus, E. M., Mikulec, A. A., Cruz-Flores, S., & Bakanas, E. (2013). A Humble
Task. Academic Medicine, 924–928. https://doi.org/10.1097/acm.0b013e318294fd5b

10. Ganzer, C. A., Jacobs, A. R., & Iqbal, F. (2014). Persistent Sexual, Emotional, and Cognitive
Impairment Post-Finasteride. American Journal of Men’s Health, 222–228. 
https://doi.org/10.1177/1557988314538445

11. Garcia, P. V., Barbieri, M. F., Perobelli, J. E., Consonni, S. R., Mesquita, S. de F. P., Kempinas,
W. de G., & Pereira, L. A. V. (2012). Morphometric-stereological and functional epididymal
alterations and a decrease in fertility in rats treated with finasteride and after a 30-day post-
treatment recovery period. Fertility and Sterility, 1444–1451. 
https://doi.org/10.1016/j.fertnstert.2012.03.025

12. Garreton, A. S., Valzacchi, G. R., & Layus, O. (2016). Post-Finasteride Syndrome: About 2 Cases
and Review of the Literature. Andrology-Open Access.
https://doi.org/10.4172/2472-1212.1000170

                                177 / 187

https://doi.org/10.1210/jc.2016-2726
https://doi.org/10.1001/jamadermatol.2015.36
https://doi.org/10.1016/j.toxlet.2012.03.020
https://doi.org/10.1097/acm.0000000000000405
https://doi.org/10.3233/JRS-180744
https://doi.org/10.1016/j.ynstr.2019.100209
https://doi.org/10.1097/acm.0b013e318294fd5b
https://doi.org/10.1177/1557988314538445
https://doi.org/10.1016/j.fertnstert.2012.03.025
https://doi.org/10.4172/2472-1212.1000170


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

13. Giatti, S., Diviccaro, S., Panzica, G., & Melcangi, R. C. (2018). Post-finasteride syndrome and
post-SSRI sexual dysfunction: two sides of the same coin? Endocrine, 180–193. 
https://doi.org/10.1007/s12020-018-1593-5

14. Gray, S. L., & Semla, T. P. (2019). Post-finasteride syndrome. BMJ, l5047. 
https://doi.org/10.1136/bmj.l5047

15. Griffin, L. D., & Mellon, S. H. (1999). Selective serotonin reuptake inhibitors directly alter
activity of neurosteroidogenic enzymes. Proceedings of the National Academy of Sciences,
13512–13517. https://doi.org/10.1073/pnas.96.23.13512

16. Hansen, C. H., Larsen, L. W., Sørensen, A. M., Halling-Sørensen, B., & Styrishave, B. (2017).
The six most widely used selective serotonin reuptake inhibitors decrease androgens and increase
estrogens in the H295R cell line. Toxicology in Vitro, 1–11. 
https://doi.org/10.1016/j.tiv.2017.02.001

17. Hawthorne, G., Sansoni, J., Hayes, L., Marosszeky, N., & Sansoni, E. (2014). Measuring patient
satisfaction with health care treatment using the Short Assessment of Patient Satisfaction measure
delivered superior and robust satisfaction estimates. Journal of Clinical Epidemiology, 527–537. 
https://doi.org/10.1016/j.jclinepi.2013.12.010

18. Heemers, H. V., & Tindall, D. J. (2007). Androgen Receptor (AR) Coregulators: A Diversity of
Functions Converging on and Regulating the AR Transcriptional Complex. Endocrine Reviews,
778–808. https://doi.org/10.1210/er.2007-0019

19. Hims. (2018, November 7). Ask hims: Can I have sex while taking finasteride? [Youtube Video].
YouTube.  https://www.youtube.com/watch?v=KU8ciNr0GfY

20. Irwig, M. S. (2015). Safety concerns regarding 5? reductase inhibitors for the treatment of
androgenetic alopecia. Current Opinion in Endocrinology & Diabetes and Obesity, 248–253. 
https://doi.org/10.1097/med.0000000000000158

21. Irwig, M. S. (2020). Finasteride and Suicide: A Postmarketing Case Series. Dermatology, 1–6. 
https://doi.org/10.1159/000505151

                                178 / 187

https://doi.org/10.1007/s12020-018-1593-5
https://doi.org/10.1136/bmj.l5047
https://doi.org/10.1073/pnas.96.23.13512
https://doi.org/10.1016/j.tiv.2017.02.001
https://doi.org/10.1016/j.jclinepi.2013.12.010
https://doi.org/10.1210/er.2007-0019
https://doi.org/ https://www.youtube.com/watch?v=KU8ciNr0GfY
https://doi.org/10.1097/med.0000000000000158
https://doi.org/10.1159/000505151


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

22. Jacobsen, N. W., Hansen, C. H., Nellemann, C., Styrishave, B., & Halling-Sørensen, B. (2015).
Effects of selective serotonin reuptake inhibitors on three sex steroids in two versions of the
aromatase enzyme inhibition assay and in the H295R cell assay. Toxicology in Vitro, 1729–1735. 
https://doi.org/10.1016/j.tiv.2015.07.005

23. Kolasa-Wo?osiuk, A., Tarnowski, M., Baranowska-Bosiacka, I., Chlubek, D., & Wiszniewska, B.
(2019). Antioxidant enzyme expression of mRNA and protein in the epididymis of finasteride-
treated male rat offspring during postnatal development. Archives of Medical Science, 797–810. 
https://doi.org/10.5114/aoms.2017.68528

24. Mahant, S., Jovcevska, V., & Wadhwa, A. (2012). The Nature of Excellent Clinicians at an
Academic Health Science Center. Academic Medicine, 1715–1721. 
https://doi.org/10.1097/acm.0b013e3182716790

25. Maksym, R., Kajdy, A., & Rabijewski, M. (2019). Post-finasteride syndrome - does it really exist?
The Aging Male : The Official Journal of the International Society for the Study of the Aging
Male, 22(4), 250–259. https://doi.org/10.1080/13685538.2018.1548589

26. Manual. (2019). Finasteride: Questions answered. Manual.Co.
https://www.manual.co/hair-loss/finasteride

27. Morgans, J. (2018, April 24). I Need to Quit Hair Loss Drugs Before They Kill Me. Vice. 
https://www.vice.com/en_uk/article/43bm3m/i-need-to-quit-hair-loss-drugs-before-they-kill-me

28. Motofei, I. G., Rowland, D. L., Tampa, M., Sarbu, M.-I., Mitran, M.-I., Mitran, C.-I., Stoian, A.
P., Diaconu, C. C., Paunica, S., & Georgescu, S. R. (2019). Finasteride and androgenic alopecia;
from therapeutic options to medical implications. Journal of Dermatological Treatment, 1–7. 
https://doi.org/10.1080/09546634.2019.1595507

29. Munkboel, C. H., Larsen, L. W., Weisser, J. J., Møbjerg Kristensen, D., & Styrishave, B. (2018).
Sertraline Suppresses Testis and Adrenal Steroid Production and Steroidogenic Gene Expression
While Increasing LH in Plasma of Male Rats Resulting in Compensatory Hypogonadism. 
Toxicological Sciences, 609–619. https://doi.org/10.1093/toxsci/kfy059

30. Patisaul, H. B., & Belcher, S. M. (2017). Endocrine Disruptors, Brain, and Behavior. In Oxford
Scholarship Online. Oxford University Press. 
https://doi.org/10.1093/acprof:oso/9780199935734.001.0001

                                179 / 187

https://doi.org/10.1016/j.tiv.2015.07.005
https://doi.org/10.5114/aoms.2017.68528
https://doi.org/10.1097/acm.0b013e3182716790
https://doi.org/10.1080/13685538.2018.1548589
https://www.manual.co/hair-loss/finasteride
https://www.vice.com/en_uk/article/43bm3m/i-need-to-quit-hair-loss-drugs-before-they-kill-me
https://doi.org/10.1080/09546634.2019.1595507
https://doi.org/10.1093/toxsci/kfy059
https://doi.org/10.1093/acprof:oso/9780199935734.001.0001


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

31. Ritterman, J. (2017). To Err is Human: Can American Medicine Learn from Past Mistakes? The
Permanente Journal. https://doi.org/10.7812/tpp/16-181

32. Rosario, D. J., & Bourke, L. (2020). Cardiovascular Disease and the Androgen Receptor: Here We
Go Again? European Urology, 167–169. https://doi.org/10.1016/j.eururo.2019.08.017

33. Said, M. A., & Mehta, A. (2018). The Impact of 5?-Reductase Inhibitor Use for Male Pattern Hair
Loss on Men’s Health. Current Urology Reports. https://doi.org/10.1007/s11934-018-0814-z

34. Sinclair, U. (1994). I, Candidate for Governor: And How I Got Licked. University of California
Press .

35. Snyder, C. R., & Ford, C. E. (Eds.). (1987). Coping with Negative Life Events. Springer US. 
https://doi.org/10.1007/978-1-4757-9865-4

36. Solecki, R., Kortenkamp, A., Bergman, Å., Chahoud, I., Degen, G. H., Dietrich, D., Greim, H.,
Håkansson, H., Hass, U., Husoy, T., Jacobs, M., Jobling, S., Mantovani, A., Marx-Stoelting, P.,
Piersma, A., Ritz, V., Slama, R., Stahlmann, R., van den Berg, M., … Boobis, A. R. (2016).
Scientific principles for the identification of endocrine-disrupting chemicals: a consensus
statement. Archives of Toxicology, 1001–1006. https://doi.org/10.1007/s00204-016-1866-9

37. Südwestrundfunk. (2019). Finasterid: Tote Hose statt kahler Kopf? SWR. 
https://www.swrfernsehen.de/marktcheck/Finasterid-Tote-Hose-statt-kahler-Kopf,av-
o1121495-100.html

38. Than, J. K., Rodriguez, K., & Khera, M. (2018). Post-finasteride Syndrome: A Review of Current
Literature. Current Sexual Health Reports, 152–157. https://doi.org/10.1007/s11930-018-0163-4

39. Thomas, L. (2018). Gaslight and gaslighting. The Lancet Psychiatry, 117–118. 
https://doi.org/10.1016/s2215-0366(18)30024-5

40. Traish, A. M. (2018). The Post-finasteride Syndrome: Clinical Manifestation of Drug-Induced
Epigenetics Due to Endocrine Disruption. Current Sexual Health Reports, 88–103. 
https://doi.org/10.1007/s11930-018-0161-6

                                180 / 187

https://doi.org/10.7812/tpp/16-181
https://doi.org/10.1016/j.eururo.2019.08.017
https://doi.org/10.1007/s11934-018-0814-z
https://doi.org/10.1007/978-1-4757-9865-4
https://doi.org/10.1007/s00204-016-1866-9
https://www.swrfernsehen.de/marktcheck/Finasterid-Tote-Hose-statt-kahler-Kopf,av-o1121495-100.html
https://www.swrfernsehen.de/marktcheck/Finasterid-Tote-Hose-statt-kahler-Kopf,av-o1121495-100.html
https://doi.org/10.1007/s11930-018-0163-4
https://doi.org/10.1016/s2215-0366(18)30024-5
https://doi.org/10.1007/s11930-018-0161-6


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

41. Traish, A. M. (2020). Post-finasteride syndrome: a surmountable challenge for clinicians. Fertility
and Sterility, 21–50. https://doi.org/10.1016/j.fertnstert.2019.11.030

42. Traish, A. M., Melcangi, R. C., Bortolato, M., Garcia-Segura, L. M., & Zitzmann, M. (2015).
Adverse effects of 5?-reductase inhibitors: What do we know, don’t know, and need to know?
Reviews in Endocrine and Metabolic Disorders, 177–198. 
https://doi.org/10.1007/s11154-015-9319-y

43. Trüeb, R. M., Régnier, A., Dutra Rezende, H., & Gavazzoni Dias, M. F. R. (2019). Post-
Finasteride Syndrome: An Induced Delusional Disorder with the Potential of a Mass Psychogenic
Illness? Skin Appendage Disorders, 320–326. https://doi.org/10.1159/000497362

44. United States v. Philip Morris USA Inc. (2006). Public Health Law Center. 
https://www.publichealthlawcenter.org/sites/default/files/resources/doj-final-opinion.pdf

45. Walf, A. A., Kaurejo, S., & Frye, C. A. (2018). Research Brief: Self-Reports of a Constellation of
Persistent Antiandrogenic, Estrogenic, Physical, and Psychological Effects of Finasteride Usage
Among Men. American Journal of Men’s Health, 900–906. 
https://doi.org/10.1177/1557988317750989

46. Wear, D. (2008). On Outcomes and Humility. Academic Medicine, 625–626. 
https://doi.org/10.1097/acm.0b013e318178379f

47. Zheng, C. J., Han, L. Y., Yap, C. W., Ji, Z. L., Cao, Z. W., & Chen, Y. Z. (2006). Therapeutic
Targets: Progress of Their Exploration and Investigation of Their Characteristics. 
Pharmacological Reviews, 259–279. https://doi.org/10.1124/pr.58.2.4

_______________________________________________

                                181 / 187

https://doi.org/10.1016/j.fertnstert.2019.11.030
https://doi.org/10.1007/s11154-015-9319-y
https://doi.org/10.1159/000497362
https://www.publichealthlawcenter.org/sites/default/files/resources/doj-final-opinion.pdf
https://doi.org/10.1177/1557988317750989
https://doi.org/10.1097/acm.0b013e318178379f
https://doi.org/10.1124/pr.58.2.4


propeciahelp.com - 04-11-2020
Post-Finasteride Syndrome info & discussion forum - https://www.propeciahelp.com

Research going forward

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/research-going-forward/

The clinical picture and molecular level understanding of PFS are not where they should be after decades
of clear reports of profound suffering and suicides caused by exposure to a cosmetic product.
Understanding of a disease, its basic molecular mechanisms, accurate experimental models with
predictive value of the disease, and access to technologies for target validation are important for progress
towards a therapy ?(Gashaw et al., 2011)? and we urge immediate steps to these ends. Finasteride is a
potent endocrine disruptor that targets diverse tissues across the organism. The severity of the symptoms
must be considered in parallel with scientific observations on the long-term physiological changes and
post-withdrawal effects induced by finasteride and the vast array of physiological processes reliant on the
appropriate function of the androgen pathway. Further study of PFS using a precision medicine approach
is necessary ?(Cauci et al., 2017; Coskuner et al., 2019; La Marra, 2010; Traish, 2018)?. As patients and
as patient advocates, we desperately need further molecular level investigation to be undertaken by
functional geneticists, epigeneticists, scientists and epidemiologists engaged with both the emerging
understanding of androgen signaling and appreciative of the full clinical and pathological picture of PFS.
Although there is an increase in reported adverse events ?(Ali et al., 2015)? associated with use of
Finasteride 1mg, the numbers of PFS patients are not clearly indicative of the problem when balanced
against the millions using this drug. However, considering the multisystemic nature of the persistent
health changes and the current void in clinical appreciation and scientific knowledge pertaining to this
condition, it is extremely likely the number of young patients experiencing insidious health problems
without attribution to a causative antiandrogen to be significant. We strongly advocate for a networked
approach with a focus on epigenetic assay as a necessity to move towards mechanistic understanding and
ultimately disease modifying treatment. Such an approach has been urged in SBMA and significant steps
towards organisation are being achieved ?(Greensmith et al., 2019; Rinaldi et al., 2015)?. The advent of
adaptive genome and epigenome editing technologies make a treatment feasible following the
determination of key mechanistic factors at the molecular level. The suggestion of reversibility of gene
dysregulation as a consequence of AR-mediated toxicity in models of other disease states, as discussed, is
suggestive of eventual therapeutic possibility.

We recommend far more thorough clinical considerations of PFS patients, particularly severe phenotypes,
to be conducted in line with the clinical findings known in androgen-mediated toxicity and the previously
reported findings in PFS patients. Primary research must be directed towards the underlying biological
differences in the patient cohort. Patients differ greatly in symptomatically affected physiological sites
and symptomatic severity, so patient selection based on symptomatic presentation is important in the
design of clinical research. We strongly urge that prior 5alpha reductase inhibitor, retinoid or serotonergic
drug prescription and use be ascertained in completed incidences of young male suicides in North
America and European nations. Currently, completed suicides that the patient themselves or their
surviving families explicitly attribute to the physical, sexual and neuropsychological damage induced by
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Finasteride are not appropriately attributed to the drug, as suicide is often occurring months or years after
cessation when the drug is no longer in their body.

There are many avenues by which to pursue immediate clinical evaluation of PFS patients beyond
appropriate basic endocrinological and urological evaluation, and these should account for the specific
symptoms of individual patients. Serum creatine-kinase levels may be worthy of assessment during the
post-withdrawal crash period or subsequent periods of muscle wasting, as some patients have reported
elevated findings. Histological study of affected muscles, including the markedly AR-sensitive perineal
muscles, would allow consideration of signs of atrophy and myogenic defects. Area calculation of the
bulbocavernosus via ultrasonography has been suggested as a measure of decreased end-organ activity of
androgens ?(Gupta et al., 2017)?, and this could potentially be a low-cost and non-invasive investigation
in PFS patients who have experienced atrophic changes. Electromyography to assess abnormalities
including signs of perineal muscle denervation may also be worthwhile. MRI protocols including
localizer scans, T1-weighted imaging and 2-point Dixon sequences have proven a useful measure of
muscle appearance and diffuse involvement in SBMA and could be useful in the phenotype profiling of
PFS in patients with broad muscle atrophy. Dual-energy X-ray absorptiometry of bone including
lumbar/thoracic spine, femur and sites of complaint, along with serum C-telopeptide testing to assess
bone mineral density and trabecular bone health may be worthwhile in patients with bone-related
symptomatology and who report structural alteration. Lipid profiling of patient cohorts would
additionally provide insight into metabolic dysregulation.

Above all, a far greater focus on molecular level research and basic science is an overdue necessity. Due
to low patient numbers, genome wide association study is unlikely to be a practical option, and full
genome sequencing of existing PFS patients should be pursued to explore the potential of predisposing
factors at the genomic level. Discovery of such genetic differences could eventually be used to screen for
risk in young consumers considering use of antiandrogenic products or supplements. Proteomic study
may yield insight into the mechanisms of toxicity. Assaying of gene expression data, study of chromatin
structure and associated proteins, and methylome analysis of pathologically relevant tissues will advance
understanding of deregulated genes as driving factors in this new and novel disease that develops
following endocrine disruption. PFS patients are usually in good health prior to use of the associated
antiandrogenic substance and can extraordinarily rapidly develop secondary disease states, many of which
are associated with advanced age. Advancing the understanding of PFS is therefore likely to yield
important mechanistic insights into a diverse array of pathologies. Comparative epigenetic profiling of
patients suffering from the disease states following Accutane and SSRI antidepressant use could provide
grounds for the wider consideration of the hypothesis regarding a common post-androgen deprivation
syndrome and thus a ground-breaking discovery.
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Conclusion

by phadmin - Monday, March 30, 2020

https://www.propeciahelp.com/post-androgen-deprivation-syndrome-conclusion/

Post-Finasteride Syndrome represents a Post-Androgen Deprivation Syndrome following exposure to
antiandrogenic endocrine disruptors and without specificity to finasteride. The common pharmacological
interruption of steroid signaling and remarkably similar clinical endpoints may imply that a single
mechanistic disease state occurs in predisposed consumers following the use of medications including
dutasteride, isotretinoin and serotonergic antidepressants. The lasting and profound changes to
physiological and neurological health are alarming and the permanence suggests that, in predisposed
individuals, epigenetic reorganisation is possible in somatic cells and postmitotic neurons following
significant interruption of androgen signaling. The past decade has seen broad appreciation that either
excessive or insufficient androgen signaling can prove deleterious to cellular homeostasis and biologic
function ?(Gibson et al., 2018)?. These mechanistic underpinnings trace back to the influential work of
Charles Huggins in the mid-20th century ?(Huggins, 1965)?.

We hypothesise a clinically significant AR deregulation is an aberrant manifestation of a conserved
mechanism of cellular adaptation to lowered levels of availability or potency of androgenic ligand or
interruption of appropriate transactivation of androgen regulated genes. Potential mechanistic factors can
be contextualised by the rapidly expanding understanding of the ability of the androgen receptor to affect
the basic epigenetic machinery and the structure of chromatin in addition to its essential regulatory
functions. Understanding the pathology may provide extremely valuable insight regarding an increasingly
apparent androgen-mediated pleiotropy of relevance to a broad spectrum of disease states often associated
with the ageing process. Scientific elucidation of predisposing genetic factors will aid in establishing
urgent protections for the public. Regulatory level action is necessary and overdue. We ask the medical
community to begin efforts towards education regarding this novel condition and to shoulder the clinical
responsibility of accurate diagnosis and appropriate follow up of PFS patients.

This document was authored by axolotl and awor, the administrators of propeciahelp.com. We are
extremely grateful for your time and consideration. If you are a specialised scientist working in
next-generation sequencing, genomics, epigenetics or androgen receptor signaling and are
interested in researching this devastating disease, please email us at: contact@propeciahelp.com.

We thank the site volunteer staff for their practical support, scientists who provided us with
feedback and support, and the academic institutions that provided access to the resources
necessary to complete this work.

axolotl and awor
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